Mississippi State University Scholars Junction

Theses and Dissertations

Theses and Dissertations

1-1-2013

Identification of Virulence Factors in Edwardsiella Ictaluri

Jingjun Lu

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation

Lu, Jingjun, "Identification of Virulence Factors in Edwardsiella Ictaluri" (2013). *Theses and Dissertations*. 2559.

https://scholarsjunction.msstate.edu/td/2559

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

Identification of virulence factors in Edwardsiella ictaluri

By

Jingjun Lu

A Dissertation Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Doctorate of Philosophy in Veterinary Medical Sciences in the College of Veterinary Medicine

Mississippi State, Mississippi

May 2013

Copyright by Jingjun Lu

Identification of virulence factors in Edwardsiella ictaluri

By

Jingjun Lu

Approved:

Attila Karsi Associate Research Professor of Basic Sciences (Co-Major Professor) Lora Petrie-Hanson Associate Professor of Basic Sciences (Co-Major Professor)

Mark L. Lawrence Professor of Basic Sciences (Committee Member) Andy D. Perkins Assistant Professor of Computer Science and Engineering (Committee Member)

Larry Hanson Professor of Basic Sciences (Graduate Coordinator) Mark L. Lawrence Associate Dean of College of Veterinary Medicine

Name: Jingjun Lu

Date of Degree: May 10, 2013 Institution: Mississippi State University Major Field: Veterinary Medical Sciences Major Professor: Attila Karsi Title of Study: Identification of virulence factors in *Edwardsiella ictaluri* Pages in Study: 139

Candidate for Degree of Doctorate of Philosophy

Edwardsiella ictaluri is the causative agent of enteric septicemia of catfish (ESC), which is one of the most important diseases impacting the US catfish industry. Though this disease has been very common, progress has been slow to find an economical and practical treatment method. Our long-term goal is to determine the mechanisms of E. *ictaluri* virulence in ESC. The overall objective of this study was to identify *E. ictaluri* genes required for host encounter and serum resistance and to determine their roles in pathogenesis. The central hypothesis is that *E. ictaluri* must differentially regulate its genes to invade fish and evade host defenses, thus, mutation of these differentially expressed genes (DEG) should cause attenuation of *E. ictaluri* virulence. To test this hypothesis, we first determined the global gene expression patterns of the wild type (wt) E. ictaluri 93-146 and EiAKMut02 mutant during catfish encounter and serum exposure using microarray analysis. Results indicated that in *E. ictaluri* wt, 377 and 16 DEGs were identified during host encounter and serum exposure, respectively. In EiAKMut02, 82 and 296 DEGs were identified during host encounter and serum experiment. Through functional analysis using Blast2GO, PSORTb, Host Pathogen Interaction Database

(HPIDB), and Microbe Virulence Database (MVirDB), 38 DEGs in 9 KEGG pathways have been identified as potential virulence factors. The KEGG pathways represented were 1) bacterial secretion system including T3SS and T6SS, 2) ABC transporters including cystine transport system, iron complex transport system, d-methionine transport system, arginine transport system, thiamine transport system, and molybdate transport system, 3) protein export, 4) flagellar assembly, 5) two-component system, 6) bacterial chemotaxis, 7) ascorbate and aldarate metabolism, 8) phosphotransferase system, and 9) metabolic pathways. In order to understand their role in the *E. ictaluri* virulence, selected DEGs were in-frame deleted by allelic exchange, and their virulence and efficacy were characterized in channel catfish fingerlings. Our results showed that the virulence of *E. ictaluri ssaV* and *yscR* mutants was completely attenuated while their efficacies were moderate in catfish fingerlings. These results support that the T3SS and T6SS, ABC transporters, protein export, and flagella seem to be important in *E. ictaluri* virulence.

DEDICATION

I would like to dedicate this research to my parents Cuilan Liu and Yulin Lu and my family Guohua Yang, Junli Yang, and Lucia C. Yang.

ACKNOWLEDGEMENTS

I would like to give my sincere gratitude and appreciation to all the people who helped me to finish my research and dissertation. First, I want to thank my major professor Dr. Attila Karsi, who has provided excellent mentorship and support in all aspects of my research. I also thank to Dr. Lora Petrie-Hanson, my co-major professor, for her guidance, and to my committee members, Dr. Mark Lawrence and Dr. Andy Perkins, for their suggestions and encouragements. My colleagues and our laboratory coordinator, Michelle Banes, have made my life wonderful and unforgettable at Mississippi State University. Thus, I want to show my appreciation for their support, friendship, and the precious memories they gave me. Finally, I would like to acknowledge the financial support from the United States Department of Agriculture, Graduate School and College of Veterinary Medicine as well as the experimental support from the Laboratory Animal Resources and Care (LARAC) personnel at Mississippi State University. Without all of you, the present work could not have been possible.

iii

TABLE OF CONTENTS

DEDICAT	TION	ii
ACKNOW	LEDGEMENTS	iii
LIST OF 1	ΓABLES	viii
LIST OF I	FIGURES	X
LIST OF S	SYMBOLS	xii
CHAPTER	R	
I.	INTRODUCTION AND REVIEW OF RELEVANT LITERATU	RE1
	The catfish industry <i>Edwardsiella ictaluri</i> Enteric septicemia of catfish (ESC) Known virulence factors in <i>E. ictaluri</i> Host defense mechanisms Significance of research and objectives	1 2 3 4
II.	GLOBAL GENE EXPRESSION ANALYSIS IN <i>EDWARDSIELD</i> <i>ICTALURI</i> DURING CATFISH HOST ENCOUNTE	LA 11
	Abstract Introduction Materials and Methods Bacterial strain and growth conditions Fry encounter model Total RNA isolation and quality check cDNA preparation Microarray analysis Microarray data extraction Microarray data analysis Bioinformatic analysis and pathway search Results Analysis of the <i>E. ictaluri</i> gene expression profiles after fry	11 12 13 13 13 13 14 15 15 15 16 17 18 19
	encounter Blast2GO	

	PSORTb	22
	HPIDB (Host Pathogen Interaction DataBase)	23
	MVirDB (Microbe Virulence DataBase)	24
	Potential virulence factors and pathway analysis	24
	Discussion	26
III.	GLOBAL GENE EXPRESSION ANALYSIS IN <i>E. ICTALURI</i> UNDER SERUM EXPOSURE	29
	Abstract	29
	Introduction	30
	Materials and Methods	31
	Bacterial strain and growth conditions	31
	Specific pathogen free serum preparation	31
	E. ictaluri serum exposure	32
	Microarray and bioinformatic analyses	32
	Results and Discussion	32
	E. ictaluri gene expression profiles following catfish serum	
	exposure	32
	Blast2GO	34
	PSORTb	35
	HPIDB (Host Pathogen Interaction DataBase)	36
	MVirDB (Microbe Virulence DataBase)	37
	Potential virulence factors and KEGG pathway	37
IV.	GLOBAL GENE EXPRESSION ANALYSIS OF E. ICTALURI gcvP	
	MUTANT IN RESPONSE TO NAÏVE CHANNEL CATFISH	39
	Abstract	39
	Introduction	40
	Materials and Methods	4 0
	Bacterial strains and growth conditions	
	Experimental procedures	
	Fry encounter model	
	Results and Discussion	42
	Analysis of gene expression profiles in $EiAKMut02$	42
	Blast2GO	45
	PSORTb	47
	HPIDB (Host Pathogen Interaction DataBase)	
	MVirDB (Microbe Virulence DataBase)	
	Potential virulence factors and KEGG pathway	49
V	GLOBAL GENE EXPRESSION ANALYSIS OF Fiak Mut02	
Υ.	MUTANT'S RESPONSE TO SPE CATFISH SERUM	
	TREATMENT	52

V

	Abstract	52
	Introduction	53
	Materials and methods	54
	Bacterial strains and growth condition	54
	Experimental procedures	54
	Results and Discussion	54
	Gene expression profiles of <i>Ei</i> AKMut02 following catfish serum	ΕA
	Blasi2GU	 57
	PSOK10	/ 3 50
	MVirDD (Migraho Virgilarea DataDase)	30 50
	Wivindb (Microbe Virulence Database)	38 60
	virulence factors and KEGO pathway	00
VI.	CONSTRUCTION AND EVALUATION OF ELEVEN E. ICTALURI IN-FRAME DELETION MUTANTS	64
	Abstract	64
	Introduction	65
	Materials and methods	65
	Bacterial strains and plasmids	65
	Genomic DNA and plasmid DNA isolation	67
	Preparation of competent cells.	68
	Selection of potential virulence genes in <i>E. ictaluri</i>	
	In-frame gene deletion <i>in vitro</i>	69
	Virulence and efficacy of <i>E. ictaluri</i> mutants in catfish fingerlings	75
	Results	
	Selection of the <i>E. ictaluri</i> target genes for mutant construction	
	Construction of the <i>E ictaluri</i> in-frame deletion mutants	77
	Virulence and efficacy of <i>E. ictaluri</i> in-frame deletion mutants	79
	Discussion	81
VII	CONCLUSIONS	8/
v 11.	CONCLUSIONS	04
REFERE	INCES	85
APPENI	DIX	
A.	COMPLETE LIST OF UP-REGULATED GENES IN <i>E. ICTALURI</i> 93-146 DURING HOST ENCOUNTER	96
B.	COMPLETE LIST OF DOWN-REGULATED GENES IN <i>E.</i> <i>ICTALURI</i> 93-146 DURING HOST ENCOUNTER	101
C.	256 DEGs IN <i>E. ICTALURI</i> 93-146 ANNOTATED BY BLAST2GO DURING HOST ENCOUNTER	108

D.	56 DEGs REPRESENTED IN MVirDB IN <i>E. ICTALURI</i> 93-146 DURING HOST ENCOUNTER	115
E.	35 DEGs IN EIAKMUT02 ANNOTATED BY BLAST2GO DURING HOST ENCOUNTER	118
F.	COMPLETE LIST OF UP-REGULATED GENES IN <i>EI</i> AKMUT02 COMPARED TO <i>E. ICTALURI</i> WT UNDER NORMAL SPF SERUM EXPOSURE	120
G.	COMPLETE LIST OF DOWN-REGULATED GENES IN <i>EI</i> AKMUT02 COMPARED TO <i>E. ICTALURI</i> WT UNDER NORMAL SPF SERUM EXPOSURE	124
H.	216 DEGS IN <i>EI</i> AKMUT02 ANNOTATED BY BLAST2GO COMPARED TO WT UNDER NORMAL SPF SERUM EXPOSURE	129
I.	129 DEGs INVOLVED IN HOST PATHOGEN INTERACTION IN EIAKMUT02 COMPARED TO WT UNDER NORMAL SPF SERUM EXPOSURE	136

LIST OF TABLES

2.1	Default parameters used for scanning NimbleGen microarray slide with MS 200 microarray scanner and MS 200 data collection software.	17
2.2	7 DEGs located on outer membrane in <i>E. ictaluri</i> by PSORTb	23
2.3	Potential virulence factors identified from bioinformatic analysis in <i>E. ictaluri</i> during catfish host encounter	25
2.4	Pathways and Modules represented in <i>E. ictaluri</i> virulence genes during host encounter.	26
3.1	Up- and down-regulated genes identified in <i>E. ictaluri</i> during catfish serum exposure.	33
3.2	DEGs involved in host-pathogen interaction in <i>E. ictaluri</i> exposed to SPF catfish serum.	37
4.1	Up-regulated genes in <i>Ei</i> AKMut02 compared to wild type during host encounter	43
4.2	Down-regulated genes in <i>Ei</i> AKMut02 mutant strain compared to wild type during host encounter	43
4.3	DEGs involved in host pathogen PPIs	48
4.4	Potential virulence factors identified in MVirDB in <i>Ei</i> AKMut02 compared to wt during host challenge	49
4.5	Virulence factors found in multiple databases	49
5.1	DEGs located on outer membrane of <i>Ei</i> AKMut02 compared to wt under SPF serum exposure	58
5.2	42 potential virulence factors identified from the 296 DEGs in <i>Ei</i> AKMut02 post SPF catfish serum exposure	59
5.3	Virulence factors identified through functional analysis in <i>Ei</i> AKMut02 after catfish serum exposrue	61

viii

5.4	Pathways represented in <i>Ei</i> AKMut02 after exposure to catfish serum	61
6.1	Bacterial strains and plasmids	66
6.2	External and internal primers used in this study for construction of in- frame deletion mutants.	69
6.3	Primers used for sequencing to confirm the deletion region in <i>E. ictaluri</i> mutants.	75
6.4	Eleven virulence genes being knocked out in this study	77

LIST OF FIGURES

2.1	GO terms at level 2 according to biological process	21
2.2	GO terms at level 2 according to cellular component.	21
2.3	GO terms at level 2 according to molecular function.	22
2.4	Bacterial localization prediction by PSORTb.	23
2.5	DEGs involved in host-pathogen interaction during host encounter experiment identified by HPIDB	24
3.1	GO terms at level 2 according to biological process	34
3.2	GO terms at level 2 according to cellular component.	35
3.3	GO terms at level 2 according to molecular function.	35
3.4	Prediction of bacterial localization for 16 DEGs.	36
4.1	GO terms at level 2 according to biological process	45
4.2	GO terms at level 2 according to cellular component	46
4.3	GO terms at level 2 according to molecular function	46
4.4	Bacterial localization prediction by PSORTb.	47
5.1	GO based on biological process for <i>Ei</i> AKMut02 and wt under serum exposure at level 2	56
5.2	GO based on cellular component for <i>Ei</i> AKMut02 and wt under serum exposure at level 2	56
5.3	GO based on molecular function for <i>Ei</i> AKMut02 and wt under serum exposure at level 2	57
5.4	Bacterial localization prediction of 296 DEGs in <i>Ei</i> AKMut02 compared to wt under serum exposure by PSORTb.	57
6.1	The process to construct <i>E. ictaluri</i> in-frame deletion mutants <i>in vitro</i>	73

6.2	Agarose gel image of single PCR product 1, product 2 of 11 <i>E. ictaluri</i> genes.	78
6.3	Agarose gel image of overlapped recombinant PCR product of 11 <i>E.</i> <i>ictaluri</i> genes.	78
6.4	Confirmation of successfully cloning by RE digestion	78
6.5	Colony PCR results after single crossover	79
6.6	Colony PCR results after 2nd crossover under sucrose selection	79
6.7	Percent mortalities of channel catfish fingerlings challenged with the 11 <i>E. ictaluri</i> in-frame deletion mutants and wt	80
6.8	Percent survival of the channel catfish fingerlings vaccinated with the 11 <i>E. ictaluri</i> mutants post challenge with the <i>E. ictaluri</i> WT strain.	81

LIST OF SYMBOLS

SPF: specific pathogen free

DEGs: differentially expressed genes

E. ictaluri: Edwardsiella ictaluri

E. coli: Escherichia coli

EiAKMut02: Edwardsiella ictaluri gcvP transposon insertion mutant

HPIDB: host pathogen interaction database

MVirDB: microbe virulence database

FC: fold change

CHAPTER I

INTRODUCTION AND REVIEW OF RELEVANT LITERATURE

The catfish industry

Farm-raised channel catfish (*Ictalurus punctatus*) is number six in the "Top10" fish and seafood consumed, and catfish production is the largest aquaculture commodity in the United States. Channel catfish production is especially important in the Southeastern States. In 2010, Mississippi, Alabama, Arkansas, and Texas accounted for 94% of the total catfish sales (USDA, 2010). Mississippi has been the leading state in catfish production and catfish sales in Mississippi valued \$218 million in 2010 (USDA, 2010). The catfish industry provides employment opportunities in Mississippi, especially in counties within the Delta (Dean et al., 2003; Tucker et al., 2004). The catfish industry, however, suffers great economic loss annually due to diseases caused by bacterial, viral, fungal, and parasitic pathogens. Enteric septicemia of catfish (ESC) caused by *Edwardsiella ictaluri* is the most devastating disease in farm-raised catfish. ESC, existing in 60.6% of catfish operations, is the most prevalent disease of farm-raised channel catfish (USDA, 2003). In 2011, ESC accounted for 22.9% of the cases submitted to the Aquatic Research and Diagnostic Laboratory at Stoneville, MS (ARDL, 2011).

Edwardsiella ictaluri

E. ictaluri is a Gram negative rod-shaped anaerobic facultative bacterium. It belongs to the family *Enterobacteriaceae*. E. ictaluri is the causative pathogen of ESC (Hawke et al., 1981). In 1976, E. ictaluri was first identified from an epizootic of fish mortalities in Alabama and named as *E. ictaluri* (Hawke, 1979; Hawke et al., 1981). The size of *E. ictaluri* is $0.75 \times 1.5 - 2.5 \mu m$, and it is slightly motile at 25 - 30 °C but not at higher temperatures. The bacterium grows slowly on agar plate, which takes 48 h at 30 ^oC. The genome of *E. ictaluri* 93-146 strain is slightly GC rich (57.5%) and consists of 3.81 million base pairs, containing 3,903 genes that encode 3,784 proteins (Williams et al., 2003). E. ictaluri is generally believed to be a facultative intracellular pathogen with the ability to survive inside professional phagocytic cells. Phagocytosed E. ictaluri has been observed in several pathological studies. In two of the studies, some of the phagocytosed bacteria appeared to be in binary division (Baldwin and Newton, 1993; Miyazaki and Plumb, 1985; Morrison and Plumb, 1994; Shotts et al., 1986a). These studies concluded that *E. ictaluri*'s ability to survive in phagocytes may be responsible for the development of a carrier state for ESC (Klesius, 1992) and could be a mechanism for dissemination (Miyazaki and Plumb, 1985; Shotts et al., 1986). Bertolini et al. investigated the serotype of E. ictaluri and concluded that E. ictaluri would be a good candidate for vaccine development as the tested strains are composed of a single serotype (Bertolini et al., 1990; Plumb and Vinitnantharat, 1989). Killed bacterins have only been efficacious under controlled laboratory conditions when given by injection (M.O. and J.A., 1986), which is not practical for commercial production. E. ictaluri can attach and penetrate host mucosal membranes rapidly and establish systemic infection, but the

precise mechanism by which this occurs is underexplored. Furthermore, little progress has been made to create effective vaccines to prevent ESC.

Enteric septicemia of catfish (ESC)

ESC has been a serious problem affecting the catfish industry since it was first described. ESC is the most prevalent disease in farm-raised channel catfish, causing the US a \$60 million economic loss annually (Shoemaker et al., 2002). All sizes and ages of catfish can be affected by *E. ictaluri* during the late spring or early summer and during the fall when water temperatures are between 22-28 °C. E. ictaluri is host specific to some extent though it was also isolated from other fish species. The disease generally occurs in one of the two forms: acute form and chronic form (MacMillan, 1985; Newton et al., 1989; Shotts et al., 1986). In the acute form, farmers experience economic losses due to rapid mortalities (Shotts et al., 1986) because fish start dying 3-14 days postinfection by *E. ictaluri*. In the chronic form, farmers experience economic losses due to decreased production with fish manifesting signs 3-4 weeks after an acute outbreak (Newton et al., 1989). The dead fish in acute ESC show bacterial septicemia, while those that died of the chronic form show "hole in the head" lesions. Behaviorally, sick fish consume less food, swim listlessly, hang vertically at water surface, or spiral in water. The disease can be horizontally transferred from infected fish or fish that have died from ESC to naïve fish (Shotts et al., 1986). The only treatment currently available is to feed pellets containing oxytetracycline, sulfadimethoxine, or florfenicol antibiotics. However, one of the earliest clinical signs of ESC is anorexia. Therefore these antibiotics are only effective in limiting the spread of an outbreak and not in treating the disease because the

antibiotics are usually food-fed. Hence, vaccines became an alternative way to reduce or eliminate the impact of *E. ictaluri*.

Known virulence factors in E. ictaluri

Many virulence factors have been identified in *E. ictaluri* since the pathogen was isolated from farm-raised channel catfish in 1976. Early reports correlating *E. ictaluri* virulence with virulence factors included the E. ictaluri polysaccharide coat, which showed greater ability to degrade chondroitin (Stanley et al., 1994), fimbriae-like structures (Morrison and Plumb, 1994), chondroitinase (Cooper et al., 1996; Stanley et al., 1994), lipopolysaccharide O side chain (Lawrence et al., 2003; Lawrence et al., 2001), and outer membrane proteins, which were shown to be involved in the initial bacterial-host cell interactions (Skirpstunas and Baldwin, 2003). More recently, 37 E. *ictaluri* related genes were associated with infection or survival deficiency in catfish, which included genes involved in adhesion, fimbriae, lipopolysaccharide biosynthesis, type III secretion system (T3SS), and urease activity (Thune et al., 2007). Previous research in our laboratory has associated 10 E. ictaluri genes, involved in TCA cycle, one carbon metabolism, SoxS oxidative response system, and T3SS, with reduced virulence (Karsi et al., 2009). The mechanism of adherence is yet to be worked out, although genes encoding fimbriae and a T3SS have been identified (Thune et al., 2007).

E. ictaluri is resistant to normal catfish serum (Karsi and Lawrence, 2007; Ourth and Bachinski, 1987), which is at least partially mediated by the O polysaccharide portion of LPS (Lawrence et al., 2003). Evidence from in vitro studies suggests that *E. ictaluri* is capable of surviving in catfish neutrophils (Ainsworth and Dexiang, 1990; Karsi and Lawrence, 2007). The mechanism for intracellular survival of *E. ictaluri* is not

www.manaraa.com

known, although it has been shown that it is not mediated by O polysaccharide (Lawrence et al., 2003). In one study, serial subcultivation resulted in failure to express 18.4 and 42.5 kDa proteins (Vinitnantharat et al., 1993). Williams et al. found that serial subcultivation results in failure of avirulent strains to express a 55 kDa outer membrane protein (OMP; Williams et al., 2003). Invasion of and survival within a host are all linked to coordinated gene expression of the pathogen. Although the number of virulence factors reported has been increasing and the complete *E. ictaluri* genome is available, more *E. ictaluri* virulence factors involved in recognition, attachment, and penetration of host mucosal membranes need to be identified.

Host defense mechanisms

The primary lymphoid organ in fish is bone marrow equivalent in primitive fishes and is the thymus in teleosts. Monocytes, macrophages, lymphocytes and surface Ig⁺ cells were seen in the thymus of catfish through cytochemical staining (Petrie-Hanson and Ainsworth, 2000). The thymus prevents antigens from reaching the thymocytes by the tight junction inside the endothelium of the blood vessels within the organ and pharyngeal epithelium covering it. The secondary lymphoid organs are the kidney, spleen, gut-associated lymphoid tissues, and other organs contain lymphohemopoietic tissue. The kidney has haemopoietic tissue producing antibody. The system of sinusoids in haemopoietic tissue is phagocytic for carbon particles and immune complexes. Melanomacrophages centers inside the haemopoietic tissue possess a reticulin capsule, lymphocytes, and pyroninophilic cells which can take up antigens and immune complexes. Macrophages in spleen, enmeshed inside the reticulin fibers, can take up foreign materials such as carbon particles and bacteria. The reticulin fibers play important

www.manaraa.com

roles in trapping immune complexes. GALT (gut-associated lymphoid tissue) and mucosal immune system in fish seem similar in all fish species histologically. Plasma cells have been seen in GALT, and the number of plasma cells increased upon antigenic challenge. Antigens in the gut caused an increase in number of intraepithelial leukocytes followed by inducing the production of specific antibodies in the mucosae and bile but not in serum. A protective immune response in skin mucus can be elicited thereafter (Zapata et al., 1996).

Fish has non-specific and specific immune systems. Non-specific immune system includes cellular defense and humoral defense. Non-specific cellular defense involves monocytes/machrophages, granulocytes, and nonspecific cytotoxic cells which lack specificity (Secombes, 1996). Non-specific humoral immune defense includes various substances inhibiting the growth of infectious microorganisms nonspecifically, such as lysozyme, interferon, C-reactive protein, transferrin, lectin and complement. These substances react with specific chemical groups or configurations but influence the growth of more than one microorganism (Yano, 1996). Specific cellular defense in fish is independent of antibody. The research on specific cell-mediated immunity in fish involves helper cell activity and requires the establishment of monocyte/macrophages as accessory cells in MLR, IL-1 signaling to helper cells, blast cell transformation and proliferation following MLR, T-cell mitogen or antigen stimulation, presence of IL-2 receptors and IL-2 signaling, secretion of IL-2 and other cytokines, MHC class I and II, T-cell receptor reaction with both MHC, and more studies in progress such as the establishment of a subpopulation of specific T-cells cytotoxic to MHC class I target cells (CD-8 T-cells), identification of CD-4, CD-8 and CD-3 molecules, confirmation of MHC

www.manaraa.com

function in fish, and establishment of cell to cell contact and killing of specific MHC I restricted target cells (Manning and Nakanishi, 1996). Specific hormonal defense is the most thoroughly studied immune system and is antibody dependent. The functions of antibody effector include neutralization, precipitation and agglutination, opsonization, and complement - mediated functions. The complement system will be discussed in detail since *E. ictaluri* is resistant to the complement system in catfish serum (Kaattari and Piganelli, 1996).

The complement system existing in serum is an important part of the vertebrate immune system being composed of about 35 different kinds of proteins categorized into nine major components from C1 to C9. Functions of complement proteins in fish found so far are similar to their counterpart in mammals, and several complement proteins, such as C3 and factor B, even have multiple isoforms. The complement system can lyse foreign cells and opsonize foreign organisms and destroy by attracting phagocytes. The basic functions of bony fish complement system include virucidal activity, bactericidal activity, parasiticidal activity, opsonic activity, chemoattracting activity and inactivation of bacterial exotoxins (Yano, 1996).

In fish, three pathways of complement activation have been identified which are the classical complement pathway (CCP), alternative complement pathway (ACP), and the lectin complement pathway (LCP) (Holland and Lambris, 2002). First, CCP can be initiated by acute-phase protein such as ligand-bound C-reactive protein, by binding antibody to host cell surface, or by some viruses, bacteria and virus-infected cells (Merino et al., 1998; Petersen et al., 2000). C1 consists of C1q and C1s. C1q activated by binding IgM, an immunoglobulin exists in fish, will activate C1s. Activated C1s cleaves

C4 and C2 into C4a, C4b, C2a, and C2b. C3 convertase, C4bC2b enzymatic complex, cleaves C3 into C3a and C3b. C5 convertase, C4bC2bC3b, cleaves C5 into C5a and C5b. C5b, C3b, C6, C7, C8, and C9 form Membrane Attack Complex (MAC) which can attack the bacterial surface by forming a channel or pore in the membrane leading to cell lysis and death.

Second, ACP is directly activated by viruses, bacteria, fungi, or tumor cells without antibody binding. C3 is activated by H₂O followed by binding of the bacterial surface adjacent to protein B which is converted to Bb by protein D. C-H₂OBb produces C3b. The C3/C5 convertase produces C5b, C5a, and more C3b. Then MAC is formed and starts cytolysis. According to the mechanism mentioned, ACP is antibody independent.

Third, LCP can be activated by binding of mannose-binding lectin (MBL), a protein complex, and the serine proteases. The MBL connects proteases 1 and 2 (MASP-1 and MACP-2) to mannans on bacterial cell surface; therefore, the activation of LCP is independent of antibody also (Holland and Lambris, 2002). Some studies showed that at least 5 different bacterial species can avoid fish host complement systems. These bacterial species are *V. anguillarum* (Trust et al., 1981), *A. salmonicida* (Munn et al., 1982), *E. ictaluri* (Ourth and Bachinski, 1987), *Y. ruckeri* (Davies, 1991; Ourth and Bachinski, 1987) and *P. piscidida* (Magarinos et al., 1994). In *V. anguillarum*, the factors responsible for serum resistance appeared to be chromosome specific. However, the serum resistance in both *V. anguillarum* and *Y. ruckeri* is related to the presence of cell surface proteins. All virulent and some avirulent strains of *Y. ruckeri* tested are serum resistant, which suggest that there is an additional factor involved in the virulence of this pathogen. In *P. piscidida*, virulent strains can survive in normal fish serum, but avirulent

strains can only survive in the heat-treated serum from which the complement system was inactivated (Evelyn, 1996). A protein layer coating the cell and the long side chains of the A. salmonicida lipopolysaccharide (LPS) traverse the A layer. These two structures may prevent complement to reach susceptible target sites on A. salmonicida cells since the bacteria will be killed by normal serum if they lose the structures (Munn et al., 1982; Sakai and Kimura, 1985). The presence of large amount of sialic acid on A. salmonicida cells protects them by suppressing the activation of complement through the alternative pathway (Ourth and Bachinski, 1987). In E. ictaluri, sialic acid-induced suppression on the activation of the ACP was thought to be the mechanism to explain why E. ictaluri can survive in normal serum obtained from channel catfish (Ourth and Bachinski, 1987). Moreover, in virulent *E. ictaluri*, larger amount of surface proteins and polysaccharide capsular material were found more than that in avirulent strains (Stanley et al., 1994). These surface components most probably prevent bactericidal materials in normal serum, such as complement and lysozyme, from contacting with vulnerable sites on the bacteria surface (Evelyn, 1996).

Significance of research and objectives

E. ictaluri can attach and penetrate host mucosal membranes rapidly and establish systemic infection. This characteristic plays an important role in rapid spreading of disease and large number of mortalities. The ability of *E. ictaluri* to quickly regulate its pathogenic mechanisms in channel catfish could be the reason why *E. ictaluri* is well-adapted to the host environment. However, the *E. ictaluri* virulence factors mediating this rapid penetration and systemic invasion have not been explored completely. Lack of such knowledge is an important problem preventing development of new therapeutic strategies

that reduce or eliminate economic losses due to *E. ictaluri*. The overall objective of this study was to identify *E. ictaluri* genes required for host encounter and serum resistance and to determine their roles in pathogenesis. The central hypothesis of this proposal was that *E. ictaluri* must differentially regulate its genes to invade fish and evade host defenses. Thus, determination of DEGs would lead to new knowledge about virulence vaccines. The specific objectives of this study were:

1: Identify differentially expressed genes of E. ictaluri during host encounter and serum exposure. The working hypothesis for this aim was that global gene expression profiles in response to host and serum presence would show important early events in the pathogenesis of ESC.

2: Mutate selected E. ictaluri genes and determine virulence in channel catfish. The working hypothesis for this aim was that mutation of selected virulence genes in E. *ictaluri* would cause attenuation of the bacterial virulence.

CHAPTER II

GLOBAL GENE EXPRESSION ANALYSIS IN *EDWARDSIELLA ICTALURI* DURING CATFISH HOST ENCOUNTE

Abstract

Edwardsiella ictaluri is a Gram-negative facultative anaerobic rod, causing enteric septicemia of catfish (ESC). ESC is one of the most prevalent diseases in the catfish industry in the US. Studies on understanding the pathogenic mechanisms of *E. ictaluri* are necessary to identify virulence relevant genes in *E. ictaluri*. In this study, using microarray analysis, we determined differentially expressed genes (DEGs) in wt *E. ictaluri* during catfish fry encounter. A total of 377 DEGs were identified with a p < 0.05and a fold change > 2 or < -2. All DEGs were analyzed further using Blast2GO, MVirDB, PSORTb, and HPIDB. We identified 15 DEGs to be potential virulence genes in *E. ictaluri*. Nine of these DEGs were involved in KEGG pathways known in *E. ictaluri*. Genes, *yscV*, *yscC*, *yscT*, *yscR*, and *yscN* are in the type three secretion system (T3SS); *icmF* is in type six secretion system (T6SS); *hmuV* is in iron complex transport system; D-methionine ABC transporter ATP-binding protein is in D-Methionine transport system; and *artP* is in arginine transport system.

Introduction

E. ictaluri is a Gram-negative facultative intracellular rod causing enteric septicemia of catfish (ESC) (Hawke, 1979; Hawke et al., 1981). The disease affects all ages of channel catfish (*Ictalurus punctatus*) during the late spring and fall when water temperatures are between 22 °C to 28 °C (Francis-Floyd et al., 1987). *E. ictaluri* can invade channel catfish through intestine (Baldwin and Newton, 1993; Newton et al., 1989; Shotts et al., 1986), olfactory sinus (Miyazaki and Plumb, 1985; Morrison and Plumb, 1994; Newton et al., 1989; Shotts et al., 1986), gills (Nusbaum and Morrison, 1996), and skin abrasions (Karsi et al., 2006; Menanteau-Ledouble et al., 2011).

The proposed mechanisms of *E. ictaluri* dissemination inside host include direct transport in blood or inside phagocytic cells (Thune et al., 1993). In catfish, disease manifests as acute enteritis and septicemia and chronic meningoencephalitis forms (MacMillan, 1985; Newton et al., 1989; Shotts et al., 1986). The acute form of ESC causes rapid and high mortalities (Shotts et al., 1986), while the chronic form of ESC reduces catfish production (Newton et al., 1989). Economic loss due to ESC in the catfish industry has been reported to be \$60 million annually (Shoemaker et al., 2002). Currently, antibiotics and vaccines are being utilized in fish farms to treat or control ESC. Antibiotics are used as feed-additive, but they can only help control spread of the disease rather than treatment because sick fish are anorexic. A commercial vaccine (Aquavac-ESC) (Klesius and Shoemaker, 1999) is available to immunize catfish fry, but it provides a moderate level of protection (Shoemaker et al., 1999). ESC is still the most prevalent disease problem in catfish industry.

Although the number of virulence factors reported has been increasing and the complete *E. ictaluri* genome is available (Williams et al., 2012), little is known about the *E. ictaluri* virulence factors that are involved in recognition, attachment, and penetration of host mucosal membranes. Because *E. ictaluri* can establish systemic infection rapidly, identification of global gene expression in the early stages of infection could help identify novel virulence targets. Therefore, the purpose of this study was to analyze global gene expression patterns in *E. ictaluri* during the pathogen-fry encounter. We expect that our study will provide new insights on molecular adaptation of *E. ictaluri* during early stages of infection.

Materials and Methods

Bacterial strain and growth conditions

In this study, *E. ictaluri* 93-146 (wt) was used (Lawrence et al., 1997). *E. ictaluri* was streaked on brain heart infusion (BHI) (Difco) agar plate containing 12.5 μ g/ml of colistin (Sigma) and incubated at 30 °C for 48 h. Small cultures were prepared by inoculating *E. ictaluri* colonies in 5 ml of BHI broth with 12.5 μ g/ml of colistin and incubating for 16-18 h at 30 °C with shaking at 200 rpm. Large cultures were prepared by diluting the overnight cultures at a ratio of 1:1000 in 15 ml BHI broth.

Fry encounter model

All fish experiments were conducted in accordance with a protocol approved by the Institutional Animal Care and Use Committee at Mississippi State University. Specific pathogen free catfish fry were produced in the College of Veterinary Medicine at Mississippi State University. Two-week old fry (120) were divided into four containers

(30 fry / container). Eight *E. ictaluri* colonies were grown in BHI broth as described above and bacterial numbers for fish encounter were adjusted to be the same in each repeat according to cultures' optical densities (OD_{600}). Bacteria were collected by centrifugation at 10,000 rpm for 3 min, and then pellets were washed three times with ddH₂O. After the final wash, bacteria were resuspended in water used to hold fish fry. Four *E. ictaluri* cultures were added into four fry containers randomly to give a concentration of 1 x 10⁷ CFU/ml water (Karsi et al., 2006). The remaining four *E. ictaluri* cultures (control) were added to the remaining containers without fry. Bacteria and fry were incubated for 3 h at room temperature under aeration. At the end of the incubation, the bacteria were collected by centrifugation and stabilized immediately using two volumes of RNAprotect Bacterial Reagent (Qiagen). After stabilization, the samples were centrifuged at 4,000 rpm for 20 min, and the bacteria were resuspended in 4 ml of RNAprotect Bacterial Reagent. The aliquots of the stabilized bacteria were prepared and stored at - 80 °C until RNA extraction.

Total RNA isolation and quality check

Total RNA was isolated from four biological replicates by using RNeasy Protect Bacteria Mini Kit (Qiagen). Contaminating bacterial DNA was eliminated using oncolumn DNase I treatment with RNase-Free DNase Set (Qiagen). The quality and concentration of the isolated total RNA were measured with NanoDrop 1000 (Thermo Scientific) and Agilent Bioanalyzer model 2100 Lab-on-a-Chip with RNA 6000 Nano Kit (Agilent Technologies). The ratios of 260/280 and 260/230 of all RNA samples were higher than 1.8. The concentration and integrity of all RNA samples met the requirements for microarray experiment set by NimbleGen.

cDNA preparation

Double-stranded cDNA was synthesized with Invitrogen SuperScript Doublestranded cDNA Synthesis Kit. 1 µl of 4 mg/ml RNase A solution was added to cleanup residual RNA template by incubating at 37 °C for 10 min. Treated with phenol:chloroform:isoamyl alcohol, the solution was centrifuged at 12,000 g for 5 min. The aqueous layer was transferred to a clean, labeled 1.5 ml tube. To precipitate cDNA, 16 µl of 7.5 M ammonium acetate, 7 µl of 5 mg/ml glycogen, and 326 µl of ice-cold absolute ethanol were added to the samples sequentially vortexing at each step. After centrifugation at 12,000 g for 20 min, 500 µl of ice-cold 80% ethanol (v/v) was used to wash the pellet twice with repeated inversion followed by centrifugation at 12,000 rpm for 5 min. The quality and integrity of cDNA was confirmed with NanoDrop 1000 and Agilent Bioanalyzer 2100 to meet the requirement for following step.

Microarray analysis

Microarray experiment was done using the custom microarray service of Roche NimbleGen (Madison, WI). After designing a 4-plex custom *E. ictaluri* array, microarray hybridization, array scan, data extraction, and preliminary data analysis were conducted at NimbleGen. All genes were interrogated with 9 probe pairs. Probe sets were selected to uniquely represent the gene transcripts and to achieve excellent hybridization characteristics.

NimbleGen One-color (Cy3) DNA Labeling Kit was used to label cDNA samples. Before hybridization for 4x72K array, Cy3 dye labeled cDNA samples were resuspended with 3.3 µl of Sample Tracking Control (STC) in the NimbleGen Hybridization Kit. Hybridization solution master mix was prepared for a 4x72K array: 29.5 µl of 2x

hybridization buffer, 11.8 μ l of hybridization component A, and 1.2 μ l of alignment oligo. 8.7 μ l of hybridization solution master mix was used for 3.3 μ l of each resuspended sample. The sample was then incubated at 95 °C for 5 min away from light and incubated again at 42 °C for 5 min or longer until ready for sample loading. X4 mixer was prepared and fixed in the slide bay of the hybridization system.

For hybridization, 8 μ l of sample was loaded to A01 fill port on the slide with a Gilson microman pipette CP10. Samples were then repeat loaded into the A02 – A04 fill ports. All fill and vent ports on X4 mixers were covered with one mixer multi-port seal. After closing the bay clamp, the mixing panel on the hybridization system was turned on and the mix mode was set to B to start mixing. The samples were hybridized to the array at 42 °C for 16 – 20 h. NimbleGen wash buffer kit and NimbleGen array processing accessories were used for washing. The mixer-slide assembly was disassembled, and the slide was washed in 42 °C+2 °C Wash I, room-temperatured Wash II for 15 sec with vigorous constant agitation, and room-temperatured Wash III for 15 sec with vigorous constant agitation. After washing steps, the slides immediately were spin-dried in a microarray dryer for 30 sec. The edges were blot-dried with lint-free paper after removing the slides from the microarray dryer.

Microarray data extraction

MS 200 microarray scanner and MS 200 data collection software were used for scanning one-color NimbleGen arrays. The default parameters used in this study were shown in Table 2.1. 5 µm resolutionwas selected for scanning. The results were saved as .tif. DEVA software and was used for importing a scanner image and extracting the data. The .tif images and the design files for the study were imported into a new project in

DEVA software. A pair report (pair) was created, and RMA analysis function was performed using DEVA software. DEVA software normalized expression data using quantile normalization (Bolstad et al., 2003). Gene calls were generated with the Robust Multichip Average (RMA) algorithm (Irizarry et al., 2003).

Table 2.1Default parameters used for scanning NimbleGen microarray slide with MS200 microarray scanner and MS 200 data collection software.

Parameter	Default Setting
Slide type	Roche NimbleGen
Speed/Sensitivity	High Speed
Channel 1	532
Channel 2	635
Laser Intensity 1	100%
Laser Intensity 2	100%
Autogain	Selected
Apply to slide 1/cycle 1	Selected

Microarray data analysis

Global transcription analysis of microarray data was conducted at Roy J. Carver Biotechnology Center, University of Illinois. NimbleScan software (v 2.6.0.0, Roche NimbleGen) was used to generate log2 normalized data values using the RMA algorithm (background correction, normalization and summarization) with the "Whole array" option, which aggregates the two on-chip technical replicates of each probe set. Statistical analysis for differential expression was done in R (http://www.R-project.org) using the limma package (Smyth, 2005). A cell-means model was fit to the two groups, taking into account the correlation due to arrays on the same chip (Smyth, 2004; Smyth et al., 2005). Pairwise comparisons were pulled as contrasts for the model, if they had raw p-values < 0.05 and +/- 2 FC in either pairwise comparison, which resulted in 451 probe sets.

NimbleGen provided only limited annotation for the probe sets on the array, thus further annotation was pulled from two databases: NCBI (NC_012779.gff downloaded on Jan 27, 2011) and Uniprot (http://www.uniprot.org/uniprot/?query= taxonomy:634503 downloaded on Jan 27, 2011). The GI IDs provided by NimbleGen were matched to GI ids from NCBI to extract Gene IDs, genomic location, protein products and protein ids. The Gene ids from NCBI were matched to Gene ids from Uniprot to gain protein Accesssion numbers, protein names, gene names, Gene Ontology terms, and Pathways. Forty Gene IDs matched to two different proteins in Uniprot; most of these IDs appeared to be similar or identical proteins and were resolved manually.

Bioinformatic analysis and pathway search

Among the DEGs, potential virulence genes were identified using Blast2GO, PSORTb, HPIDB, and MVirDB databases. A FASTA file containing the protein sequences of DEGs was used as the input. Blast2GO was used to improve the annotation of the DEGs that had been identified from the microarray experiment, and all DEGs were categorized into different functional groups (Conesa et al., 2005; Götz et al., 2008). Prediction of subcellular localization of the proteins encoded by the DEGs was conducted with PSORTb (Yu et al., 2010), which categorized all differentially expressed proteins into sub-cellular localizations in the bacterium. Host Pathogen Interaction Database (HPIDB) hosted at Mississippi State University (http://www.agbase.msstate.edu/ hpi/main.html) (Kumar and Nanduri, 2010) was used to search genes involving in hostpathogen interactions. HPIDB includes experimental protein-protein interactions (PPIs) information from several public accessible databases and provides identification of PPIs between host and pathogen. Advanced BLAST search was used to perform BLASTP for

all DEGs against the full database. The Matrix was set as blosum 62. The cutoff valued was set to be 1E-10. All DEGs were blasted against microbial virulence database MvirDB (Zhou et al., 2007) to identify genes encoding putative virulence factors. MVirDB is a microbial database of protein toxins, virulence factors, and antibiotic resistance genes. The database combines DNA and protein sequence information from well-known virulence databases, including Tox-Prot, SCORPION, the PRINTS virulence factors, VFDB, TVFac, Islander, ARGO, and a subset of VIDA. In the current study, MVirDB database was downloaded from LLNL website and the protein sequences of DEGs were blasted against MVirDB database with Standalone blast using CLC Genomics Workbench v 4.0.2. An e-value of 10^{-10} and a 20% identity between subject sequence and query sequence were used as objective parameters to identify the virulence related genes. Subjective parameters including the function of the gene, pathway involved by the gene, etc. were also considered to determine virulence genes in E. *ictaluri*. All information from MVirDB/HPIDB/PSORTb/Blast2GO was integrated to determine target virulence or virulence related genes in *E. ictaluri*. Pathway analysis was performed for the identified virulence genes with KEGG pathway database (http://www.genome.jp/kegg-bin/show organism?org=eic).

Results

Analysis of the E. ictaluri gene expression profiles after fry encounter

Through statistical analysis of microarray data, 10.26% of genes in *E. ictaluri* 93-146 genome showed significant changes in expression level (p < 0.05 and FC > 2 or < -2 in expression) upon bacterial encounter with the catfish host. Compared to *E. ictaluri* 93-146 without catfish fry, 377 genes were differentially expressed. 145 genes were up-

regulated (Appendix A), and 232 genes were down-regulated (Appendix B) in *E. ictaluri*. The greatest fold change of up-regulated genes was 6.83. The greatest fold change of down-regulated genes was 8.77. Of 145 up-regulated genes, 7 genes were up-regulated from 4 to 6 fold following host encounter; and 138 genes were up-regulated from 2 to 4 fold. Of 232 down-regulated genes, 7 genes were down-regulated from 6 to 8 fold following host encounter; 26 genes were down-regulated from 4 to 6 fold; and 189 genes were down-regulated from 2 to 4 fold.

Blast2GO

GeneOntology (GO) mapping for DEGs according to biological process, cellular components, and molecular function was performed with Blast2GO. The protein sequences of all 377 DEGs identified in this study were blasted against public and private sequence databases followed by InterProScan to complete the functional annotation depending on BLAST with protein domain information. 256 out of 377 DEGs were annotated by Blast2GO (Appendix C). Species distribution according to the top hits from BLASTP results showed that 364 DEGs match to *E. ictaluri*; 5 DEGs match to *Clostridium carboxidivorans*; 4 DEGs match to *E. tarda*; and 1 DEG matches to *Shigella dysenteriae*. The total number of GO terms was 1001 including 341 biological process terms (34.1%), 152 cellular component terms 15.2%), and 508 molecular function terms (50.7%). Annotated sequences were assigned to gene ontologies according to biological process (Figure 2.1), cellular component (Figure 2.2), and molecular function (Figure 2.3) at level 2. The results showed that metabolic process, cellular process, biological regulation, localization and response to stimulus are important annotation terms in biological process category; cell, macromolecular complex, organelle and extracellular

region in cellular component category; binding, catalytic activity, transporter activity, transcription regulator activity, electron carrier activity are the important annotation terms in molecular function category.

Figure 2.1 GO terms at level 2 according to biological process.

Figure 2.2 GO terms at level 2 according to cellular component.

molecular_function Level 2

Figure 2.3 GO terms at level 2 according to molecular function.

PSORTb

PSORTb V3.0.2 predicts bacterial subcellular localization of target proteins. The protein sequences of all 377 DEGs identified in this study were submitted to PSORTb as a FASTA file. The subcellular locations of DEGs were predicted to be in cytoplasmic, periplasmic, cytoplasmic membrane, extracellular, outer membrane, and unknown categories. The result showed that there were 234 DEGs whose bacterial localizations were predicted while the remaining 143 DEGs were not predicted (Figure 2.4).

Figure 2.4 Bacterial localization prediction by PSORTb.

The digits on green area are the number of DEGs down-regulated, and the digits on the red area are the number of DEGs up-regulated.

From the PSORTb result, most of the DEGs were predicted to be in the cytoplasm, followed by cytoplasmic membrane, periplasmic, outer membrane, and extracellular. The 7 DEGs, which were predicted to locate on outer membrane in *E*. *ictaluri*, are listed in Table 2.2.

GI	Protein	Score
238918184	Maltoporin	10
238918845	Outer membrane lipoprotein blc	9.92
238918877	Type III secretion outer membrane pore, yscc/hrcc family, putative	10
238919522	Outer membrane protein slp	9.93
238919741	Hypothetical protein NT01EI_1845	9.92
238919771	Outer membrane protein N	10
238921206	Nucleoside-specific channel-forming protein tsx	10

Table 2.27 DEGs located on outer membrane in *E. ictaluri* by PSORTb.

HPIDB (Host Pathogen Interaction DataBase)

The top hit result showed that 138 of 377 DEGs were involved in host pathogen

interactions. The DEGs mostly matched to Yersinia pestis, followed by Bacillus

anthracis, and *Francisella tularensis* (Figure 2.5). Upon searching against the full database, the remaining DEGs match to the following eukaryotes: *Homo sapiens, Rattus norvegicus*, and *Arabidopsis thaliana*.

Figure 2.5 DEGs involved in host-pathogen interaction during host encounter experiment identified by HPIDB

MVirDB (Microbe Virulence DataBase)

56 DEGs match to known virulence factors (percent identity > 20% and E-value <

1E-20) (Appendix D). 7 DEGs belong to T3SS; 3 DEGs encode membrane proteins; 2

DEGs encode flagellin.

Potential virulence factors and pathway analysis

The results from Blast2GO, PSORTb, HPIDB, and MVirDB were pooled together

and 15 DEGs were identified to be the genes most relevant to E. ictaluri pathogenesis

(Table 2.3).

GI	Protein product	Symbol	Locus Taq
238918892	Secretion system apparatus protein ssav	Yscv	NT01EI_0958
238918794	Amino acid permease-associated region	Cadb	NT01EI_0858
238918253	Lysine/cadaverine transport protein	Cadb	NT01EI_0290
238918877	Type III secretion outer membrane pore, yscc/hrcc family	Yscc	NT01EI_0943
238920297	Flagellin	Fla	NT01EI_2407
238919771	Outer membrane protein N2	Ompn2	NT01EI_1875
238919801	Hypothetical protein	Hmuv	NT01EI_1905
238918894	Type III secretion apparatus protein, yscr/hrcr family, putative	Yscr	NT01EI_0960
238918896	Type III secretion apparatus protein, spar/ysct/hrct, putative	Ysct	NT01EI_0962
238918580	D-methionine ABC transporter, ATP-binding protein, putative	Dmabc	NT01EI_0632
238918937	Hypothetical protein	Hp1004	NT01EI_1004
238920767	Hypothetical protein	Hp2886	NT01EI_2886
238920408	Histidine transport ATP-binding protein hisp	Artp	NT01EI_2518
238920639	Hypothetical protein; type VI secretion system protein impl	Icmf	NT01EI_2751
238918891	Flagellum-specific ATP synthase	Yscn	NT01EI_0957

Table 2.3Potential virulence factors identified from bioinformatic analysis in *E.ictaluri* during catfish host encounter

These 15 DEGs were searched against KEGG pathway database, and the bacterial secretion system (eic03070) and the ABC transporters (eic02010) pathways were represented. Six *E. ictaluri* genes were involved in the bacterial secretion system pathway, and three *E. ictaluri* genes were involved in the ABC transporters pathway (Table 2.4). Using tighter functional analysis with Module with the same six genes, 5 genes are involved in T3SS (eic_M00332) including yscV, yscC, yscR, yscT and yscN; icmF is involved in T6SS (K11891); hp1905 is involved in iron complex transport system (eic_M00240); NT01EI_0632 involved in D-Methionine transport system (eic_M00238); and artP is involved in Arginine transport system (eic_M00229) (Table 2.4).

GI	Locus Taq	Pathway	Module
238918892	NT01EI_0958	Bacterial secretion system (eic03070)	Type III secretion system (eic_M00332)
238918877	NT01EI_0943	Bacterial secretion system (eic03070)	Type III secretion system (eic_M00332)
238919801	NT01EI_1905	ABC transporters (eic02010)	Iron complex transport system (eic_M00240)
238918894	NT01EI_0960	Bacterial secretion system (eic03070)	Type III secretion system (eic_M00332)
238918896	NT01EI_0962	Bacterial secretion system (eic03070)	Type III secretion system (eic_M00332)
238918580	NT01EI_0632	ABC transporters (eic02010)	D-Methionine transport system (eic_M00238)
238920408	NT01EI_2518	ABC transporters (eic02010)	Arginine transport system (eic_M00229)
238920639	NT01EI_2751	Bacterial secretion system (eic03070)	type VI secretion system protein ImpL (K11891*)
238918891	NT01EI_0957	Bacterial secretion system (eic03070)	Type III secretion system (eic_M00332)
238920639 238918891 *· A V E (NT01EI_2751 NT01EI_0957	Bacterial secretion system (eic03070) Bacterial secretion system (eic03070)	Type VI secretion system protein ImpL (K11891*) Type III secretion system (eic_M00332)

Table 2.4Pathways and Modules represented in *E. ictaluri* virulence genes during
host encounter.

*: A KEGG number is assigned to this gene product.

Discussion

Of the 3,903 genes in the *E. ictaluri* genome, 377 (10.26%) were differentially expressed during the presence of catfish fry compared to the control group (no catfish fry). Results showed that many genes were involved in recognition, attachment, and penetration of host mucosal membranes. Further analysis of these DEGs might provide more information on molecular adaptation of *E. ictaluri* during early stages of infection.

Bioinformatic analysis of 377 DEGs showed that 15 *E. ictaluri* genes are potential virulence genes (Table 2.3). Therefore, according to the findings in the current study, T3SS, T6SS, iron complex transport system, D-Methionine transport system, and arginine transport system may be important for *E. ictaluri*'s invasion of channel catfish. The 4 hypothetical proteins and those not found in any pathway may provide more information to understand the invasion mechanisms of *E. ictaluri* in the future. Previous studies have shown that outer membrane proteins are important for bacterial virulence.

Our finding of 7 outer membrane proteins differentially expressed in *E. ictaluri* infection provides more targets for further understanding this pathogen's virulence.

Our study also found that bacterial secretion systems T3SS and T6SS are important during infection. It has been reported that at least 6 types of protein secretion systems were found in Gram-negative bacteria. Type I and type III are *sec*-independent secretion pathways, while type II and type IV are *sec*-dependent secretion pathways (Hueck, 1998). Type V was named for the pathway used by autotransporter and similar proteins (Henderson et al., 2004). In proteobacteria, the type VI secretion system was reported to be important in the virulence of several human or fish pathogens (Filloux et al., 2008; Mougous et al., 2006; Pukatzki et al., 2006).

T3SS, first discovered in pathogenic strain of *Yesinia spp* (Michiels et al., 1990), seems to play very important roles in *E. ictaluri* infection during catfish host encounter experiment. The discussion below focused on T3SS and T6SS because 5 T3SS genes (*yscV*, *yscC*, *yscT*, *yscR*, and *yscN*) and 1 T6SS gene were identified as potential virulence factors.

YscR, YscV and YscT are inner membrane proteins in T3SS. YscR was reported to regulate expression of Low-Ca²⁺ Response Stimulon (LCRS) operons and secretion of LCRS proteins in *Y. pestis* (Fields et al., 1994). Oligorization of YscV needs the help of YscR and other two other export apparatus (Diepold et al., 2011). T3SS apparatus is also called injectisome due to its function in allowing bacteria to inject effector proteins into eukaryotic hosts by passing through two bacterial membranes and one eukaryotic membrane (Cornelis and Wolf-Watz, 1997; Galán and Collmer, 1999). YscV is an essential component of T3SS injectisome and is composed of eight transmembrane parts

and one C- terminal cytosolic domain (Diepold et al., 2011). YscT is a component of export apparatus in T3SS in *Y. pestis* and generally contains transmembrane helices (Diepold et al., 2011). In *Xanthomonas homologues*, YscT, however, has larger periplasmic domains (Berger et al., 2010). YscC is a secretin located on outer membrane and is involved in translocation of *Yersinia* outer proteins (Yops) into eukaryotic target cells (Plano and Straley, 1995). High-level expression of Low-Ca2+ Response Stimulon proteins in *Y. pestis* was also related to YscC (Goodin et al., 2005). YscN is an ATPase and is involved in the assembly and function of *Y. pestis* type III secretion apparatus. High levels of reporter gene activation can be obtained by the combination of YscN and YscL in *Y. pestis* (Jackson and Plano, 2000).

T6SSs were named as IcmF-associated homologous proteins previously and were found in at least 16 Gram-negative proteobacteria (Das and Chaudhuri, 2003). IcmF is an inner membrane protein in T6SS and was reported to be a protein contributing to stabilize the *Legionella pneumophila* T4SS (Sexton et al., 2004). The *icmF* gene in *E. ictaluri* may have the same function since it was somewhat conserved in many Gram-negative proteobacteria.

CHAPTER III

GLOBAL GENE EXPRESSION ANALYSIS IN *E. ICTALURI* UNDER SERUM EXPOSURE

Abstract

Edwardsiella ictaluri is a Gram-negative facultative anaerobic rod and the causative agent of enteric septicemia of catfish (ESC). E. ictaluri is one of the most prevalent pathogens of catfish, causing a significant economic loss in the catfish industry. *E. ictaluri* is resistant to complement system in catfish serum and can establish systemic septicemia rapidly. More studies are needed for understanding the mechanisms of E. *ictaluri* serum resistance. In the present study, we conducted microarray gene expression analysis in *E. ictaluri* treated with naive catfish serum. Our results showed that 16 differentially expressed genes (DEGs) were identified through microarray data analysis with a p < 0.05 and a fold change > 1.5 or < -1.5. Three genes have been up-regulated and 13 genes have been down-regulated. Two genes have been annotated and identified to be virulence genes through Blast2GO, MVirDB, PSORTb and HPIDB search. These two genes were found in two known *E. ictaluri* pathways. One was the type III secretion apparatus protein (GI 238918894), which is in T3SS (eic M00332). The other was the type III transport ATP binding protein sfuC-like (GI 238920290), which is found in the cystine transport system (eic M00234). This study showed that T3SS in *E. ictaluri* may play roles in resistance to fish complement system.

Introduction

ESC is one of the most prevalent diseases to cause economic losses in the catfish industry. All ages of farm-raised channel catfish are vulnerable to infection by E. ictaluri when water temperatures are between 22 °C to 28 °C (Francis-Floyd et al., 1987). E. *ictaluri* can invade channel catfish through the intestine (Baldwin and Newton, 1993; Newton et al., 1989; Shotts et al., 1986), olfactory sinus (Miyazaki and Plumb, 1985; Morrison and Plumb, 1994; Newton et al., 1989; Shotts et al., 1986), gills (Nusbaum and Morrison, 1996), and skin abrasions (Karsi et al., 2006; Menanteau-Ledouble et al., 2011). It has been reported that *E. ictaluri* has the capability to evade the host immune system and can replicate inside the host phagocytes (Baldwin and Newton, 1993). The dissemination of ESC in catfish is very rapid: *E. ictaluri* was found in the kidney tissue of catfish as soon as 15 min post-gastric lavage (Baldwin and Newton, 1993). The proposed mechanisms of *E. ictaluri* dissemination inside host include direct transport into blood or inside phagocytic cells (Thune et al., 1993). After immersion using bioluminescence, Karsi et al. (2006) also found that this pathogen spreads throughout the entire fish body within 60 h after infection.

E. ictaluri is resistant to the alternative complement system (Ourth and Bachinski 1987). The complement system in serum is an important part of the vertebrate immune system composed of about 35 different kinds of proteins categorized into nine major components from C1 to C9. The study of fish complement system is far from complete. Functions of complement proteins in fish found so far are similar to their counterpart in mammals, and several complement proteins even have multiple isoforms such as C3 and factor B. The complement system can lyse foreign cells and opsonize foreign organisms

for phagocytosis. The basic functions of bony fish complement system include virucidal, bactericidal, parasiticidal, opsonic, and chemoattracting activities. In fish, there are three pathways of complement activation, the classical complement pathway (CCP), alternative complement pathway (ACP), and the lectin complement pathway (LCP). Though the complement system in serum plays important roles to identify and aid in clearance of bacteria and foreign cells (Schmidt and Colten, 2000), mechanisms of *E. ictaluri* catfish serum resistance are still not understood completely. In this study, we identified differentially expressed genes (DEGs) in *E. ictaluri* after serum exposure. We expected that differentially expressed genes may provide new knowledge about *E. ictaluri* serum resistance.

Materials and Methods

Bacterial strain and growth conditions

In this study, *Edwardsiella ictaluri* 93-146 was used (Lawrence et al., 1997). *E. ictaluri* culture conditions were as described in chapter II.

Specific pathogen free serum preparation

Catfish serum was prepared from SPF channel catfish. Briefly, catfish weighing 1-2 kg were anesthetized in water containing 200 mg/liter of tricaine methane sulfonate (Argent Laboratories), and blood was collected at 1% of the body weight of catfish. After clot formation at room temperature, samples were transferred onto ice and incubated for an additional 30 min. The liquid phase was centrifuged at 3,000 rpm for 10 min at 4 °C using a with Sorvall® LegendTM RT centrifuge (Thermo Electron Corp., Asheville, NC). Catfish serum was aliquoted in 50 ml tubes and frozen at -80 °C until use. Complement

free catfish serum was prepared by heat treatment of normal serum at 65 °C for 45 min. Before serum exposure, heat treated and non-heat treated serum were placed in 30 °C water bath for 15 min to get a uniform temperature.

E. ictaluri serum exposure

E. ictaluri was exposed to normal and heat-treated catfish serum, and each treatment included four biological replicates. Briefly, eight *E. ictaluri* cultures were washed three times using 1.25 ml of cell wash buffer (10 mM TrisCl and 5 mM magnesium acetate). Normal and heat-inactivated serum (1.25 ml) were added onto *E. ictaluri* pellet, mixed, and incubated for 2 h at 30 °C. The serum in tubes was replaced with 1.25 ml of fresh serum and incubated a further 2 h. During incubation, the tubes were inverted 10 times every 30 min to mix bacteria and serum thoroughly. After the incubation, serum-bacteria mix was transferred to 15 ml centrifuge tubes containing 3 ml RNAprotect bacterial reagent and incubated at room temperature for 10 min. After this, serum-bacteria mix was aliquoted equally into four microcentrifuge tubes and frozen at - 80 °C until total RNA isolation.

Microarray and bioinformatic analyses

Total RNA purification, cDNA synthesis, microarray experiments, and bioinformatic analysis have been conducted as described in chapter II.

Results and Discussion

E. ictaluri gene expression profiles following catfish serum exposure

16 DEGs have been identified in *E. ictaluri* exposed to the normal catfish serum compared to the *E. ictaluri* exposed to heat-inactivated serum (p<0.05 and FC > 1.5). The

proportion of DEGs was only 0.4344% of 3,903 genes in *E. ictaluri* genome. Three genes were up- regulated, while 13 genes were down-regulated (Table 3.1). Fold change was between 1.5 and 1.7 for up-regulated genes and between 1.5 and 2.5 for down-regulated genes.

	Fold			
GI	Change	P.Value	Protein_product	GeneName
			Branched-chain amino acid transport system II carrier	-
238920912	1.69	0.003	protein, putative	EiORF_3040
238921474	1.62	0.012	Hypothetical protein	EiORF_3626
238920156	1.55	0.023	Hypothetical protein	EiORF_2262
238919547	-1.50	0.010	Hypothetical protein	EiORF_1643
			Type III secretion apparatus protein, yscr/hrcr family,	,
238918894	-1.55	0.022	putative	EiORF_0960
238918895	-1.58	0.028	Esas	EiORF_0961
238918878	-1.59	0.048	Hypothetical protein	EiORF_0944
238919336	-1.59	0.015	Hypothetical protein	EiORF_1428
238920564	-1.60	0.017	Hypothetical protein	EiORF_2676
238920290	-1.65	0.006	ABC transporter, ATP-binding protein, putative	EiORF_2400
238921148	-1.71	0.014	Diaminopimelate decarboxylase, putative	EiORF_3289
238918881	-1.87	0.012	Hypothetical protein	EiORF_0947
238920289	-1.91	0.028	Hypothetical protein	EiORF_2399
238921731	-1.96	0.004	Aspartateammonia ligase, putative	EiORF_3900
238918103	-2.11	0.022	Cadmium-translocating P-type atpase, putative	EiORF_0127
238920803	-2.32	0.002	Glutamate/aspartate periplasmic-binding protein	EiORF_2929

Table 3.1Up- and down-regulated genes identified in *E. ictaluri* during catfish serum
exposure.

The up-regulated genes included branched-chain amino acid transport system II carrier protein (BrnQ), and 2 hypothetical proteins. BrnQ is composed of 456 amino acids and is located on membrane. This protein functions as a multi-pass membrane protein and is a component of the LIV-II transport system for branched-chain amino acids. Functions of the other two hypothetical proteins are yet to be known.

Down-regulated proteins included T3SS apparatus protein YscR/HrcR, EsaS, ABC transporter, diaminopimelate decarboxylase, aspartate-ammonia ligase, cadmiumtranslocating P-type ATPase, glutamate/aspartate periplasmic-binding protein and 6 hypothetical proteins.

Blast2GO

Blast2GO analysis has annotated 10 DEGs out of 16 DEGs. The top hits for BLASTP results showed that all 16 DEG sequences match to *E. ictaluri*. The total number of GO terms was 41, including 13 biological process terms (31.7%), 8 cellular component terms (19.5%), and 20 molecular function terms (48.8%). Annotated sequences were assigned to GO terms according to biological process (Figure 3.1), cellular component (Figure 3.2), and molecular function (Figure 3.3) at level 2.

Figure 3.1 GO terms at level 2 according to biological process.

Figure 3.2 GO terms at level 2 according to cellular component.

Figure 3.3 GO terms at level 2 according to molecular function.

PSORTb

PSORTb has predicted and categorized the location of 16 DEGs into six categorizations: cytoplasmic, periplasmic, cytoplasmic membrane, extracellular, outer membrane, and unknown (Figure 3.4). The PSORTb result showed that predicted DEGs were located at three subcellular locations: cytoplasmic membrane, cytoplasmic, and

periplasmic. The subcellular locations of the remaining DEGs were unknown. The DEGs on cytoplasmic membrane may function to transfer molecules into the cell. The unknown group may provide more accurate localization predictions when enough information is available for those proteins.

Figure 3.4 Prediction of bacterial localization for 16 DEGs.

The digits on top are the number of DEGs down-regulated and the digits on the bottom are the number of DEGs up-regulated.

HPIDB (Host Pathogen Interaction DataBase)

BLASTP has been conducted to search all 16 DEGs against full database. The top hit result suggests that 50% of differentially expressed proteins from serum exposure

experiment were potentially involved in host pathogen interaction (Table 3.2).

GI	Subject id	Organism
238920912	UNIPROT_AC:Q81T30	Bacillus anthracis
238921731	UNIPROT_AC:Q81S64	Bacillus anthracis
238918103	UNIPROT_AC:Q8D1J3	Yersinia pestis
238918894	UNIPROT_AC:P69980	Yersinia pestis
238919547	UNIPROT_AC:Q8D0G3	Yersinia pestis
238920290	UNIPROT_AC:Q7CI05	Yersinia pestis
238920803	UNIPROT_AC:Q7CJU9	Yersinia pestis
238921148	UNIPROT_AC:Q7CGZ1	Yersinia pestis

Table 3.2DEGs involved in host-pathogen interaction in *E. ictaluri* exposed to SPF
catfish serum.

MVirDB (Microbe Virulence DataBase)

Only 2 DEGs encoding type III secretion apparatus protein (GI 238918894) and type III transport ATP binding protein sfuC like (GI 238920290) were identified to be virulence related in *E. ictaluri* (percent identity > 20% and E-value < 1E - 20). The result suggests that T3SS plays critical roles in *E. ictaluri* infection. Further study on these two genes is expected to shed light upon understanding of *E. ictaluri*'s virulence mechanisms.

Potential virulence factors and KEGG pathway

Among the 16 DEGs identified in *E. ictaluri* post catfish serum exposure, type III secretion apparatus protein YscR (GI 238918894; NT01EI_0960) and ATP binding protein sfuC like (GI 238920290; NT01EI_2400) have been identified to be potential virulence factors. Type III secretion apparatus protein YscR has been annotated and identified in MVirDB/HPIDB/PSORTb/Blast2GO. ATP binding protein sfuC like was found in MVirDB/HPIDB/PSORTb. These two proteins in *E. ictaluri* may play roles in resisting host serum during infection. T3SS apparatus protein YscR is located on the bacterial inner membrane and consists of 215 amino acids. This protein plays roles in

T3SS (eic_M00332) (http://www.genome.jp/kegg-

bin/show_pathway?eic03070+NT01EI_0960) and may be involve in *E. ictaluri* virulence during catfish infection. According to Fields et al.'s study, in-frame deletion of *yscR* gene in *Yersinia pestis* caused defective secretion of certain virulence related proteins (Fields et al., 1994). sfuC might be a polar but membrane-bound protein and plays roles in iron transportation in iron-limited media (Angerer et al., 1990). *E. ictaluri sfuC* consists of 258 amino acids and belongs to the ABC transporter superfamily, playing role in cystine transport system (eic_M00234). SfuC has similar function as YecC, which is a component of FliY-YecS-YecC complex. SfuC is found in cystine transport system (eic_M00234), therefore it likely plays a role in the transportation of cystine in *E. ictaluri*. The result may suggest that cystine is a necessary amino acid during *E. ictaluri* infection or may also play roles in other aspects of *E. ictaluri*. This study indicates that type III secretion system and ABC transporter in *E. ictaluri* may play roles during host serum exposure.

CHAPTER IV

GLOBAL GENE EXPRESSION ANALYSIS OF *E. ICTALURI gcvP* MUTANT IN RESPONSE TO NAÏVE CHANNEL CATFISH

Abstract

Catfish aquaculture is a \$423 million industry in the US (Hanson and Sites, 2012), which is particularly important in the Southern states of Mississippi, Alabama, Louisiana, and Arkansas. Enteric septicemia of catfish (ESC) is the most prevalent catfish disease, causing millions of dollars loss economically. Edwardsiella ictaluri is the causative agent of ESC, and its pathogenic mechanisms have not been understood completely. An E. *ictaluri gcvP* mutant (*Ei*AKMut02) has been produced in our lab and shown that it is completely attenuated and highly protective in catfish fingerlings. The gcvP is part of the glycine cleavage system, and we showed that it is important for both neutrophil and serum resistance in *E. ictaluri*. To better understand the importance of the *gcvP* in *E*. *ictaluri* virulence, we compared the global gene expression between the *E. ictaluri* wt and gcvP mutant after catfish fry encounter. There were 82 genes differentially expressed, including 13 up-regulated and 69 down-regulated genes. Bioinformatic analysis has been performed on all DEGs using Blast2GO, PSORTb, HPIDB, and MVirDB. Three of 82 DEGs showed homology to known virulence factors from other pathogenic bacteria. ulaA (GI238921506) functions in both ascorbate and aldarate metabolism (eic 00053) and phosphotransferase system (PTS; eic_02060) pathways. *ulaA* plays a role in ascorbate

degradation (ascorbate to D-xylulose-5P; eic_M00550) and is a component of the PTS system and/or ascorbate-specific II component (eic_M00283). *thiQ* (GI238918647) functions in ABC transporters pathway and plays a role in thiamine transport system (eic_M00189). Molybdate ABC transporter permease (GI238920722) also functions in ABC transporters pathway and plays a role in the molybdate transport system (eic_M00189).

Introduction

E. ictaluri is the causative pathogen of enteric septicemia of catfish (ESC) and is a Gram-negative facultative rod belonging to Enterobacteriaceae (Hawke, 1979; Hawke et al., 1981). All ages of channel catfish (*Ictalurus punctatus*) can be affected by this pathogen during the late spring and fall when water temperatures are between 22 to 28 °C (Francis-Floyd et al., 1987). Many virulence factors have been identified by different research groups (Cooper et al., 1996; Lawrence et al., 2003; Lawrence et al., 2001; Morrison and Plumb, 1994; Skirpstunas and Baldwin, 2003; Stanley et al., 1994; Thune et al., 2007). Our research has associated the glycine cleavage system with reduced virulence in *Ei*AKMut02, which contains a transposon insertion in its *gcvP* gene (Karsi et al., 2009). The GcvP protein is part of the glycine cleavage system, which catalyzes glycine oxidation reversibly to form 5, 10-methylenetetrahydrofolate, one of two sources of one carbon donor along with serine hydroxymethyltransferase. Glycine can induce the expression of the glycine cleavage enzyme system (Meedel and Pizer, 1974; Stauffer et al., 1994). A gcvP mutant cannot use glycine as a one carbon source and excrete glycine (Plamann et al., 1983). E. ictaluri gcvP is located downstream of gcvH and gcvT. gcvP is the third gene in the three gene operon encoding subunits of the glycine cleavage system.

The disturbance of the *gcvP* gene function in *Ei*AKMut02 mutant resulted in reduced resistance against catfish neutrophils, and catfish serum, and attenuated in catfish fingerlings compared to wild type (Karsi et al., 2009). Thus, the purpose of this work was to investigate differences between the *Ei*AKMut02 mutant and wt during fry encounter.

Materials and Methods

Bacterial strains and growth conditions

In this study, *Edwardsiella ictaluri* wild type 93-146 strain and *Ei*AKMut02 mutant were used (Karsi et al., 2009; Lawrence et al., 1997). *Ei*AKMut02 is a mutant of *E. ictaluri* 93-146, which was constructed by transposon insertion to the gene *gcvP* (Karsi et al., 2009). Both strains were grown in brain heart infusion (BHI) (Difco) agar and broth at 30 °C. Ampicillin (100 μ g/ml), colistin (12.5 μ g/ml) and gentamycin (12.5 μ g/ml) antibiotics were added to the growth medium when needed.

Experimental procedures

Experimental fish, fry encounter, total RNA purification, cDNA synthesis, microarray experiments, and bioinformatic analysis have been conducted as described in chapter II. In *Ei*AKMut02 fry encounter experiment, *E. ictaluri* wt encountered with fry was used as control.

Fry encounter model

All fish experiments have been conducted in accordance with a protocol approved by the Institutional Animal Care and Use Committee at Mississippi State University. Specific pathogen free catfish fry were produced in the College of Veterinary Medicine at Mississippi State University. Two-week old fry (120) were divided into four containers

(30 fry / container). Eight *E. ictaluri* colonies were grown in BHI broth as described above and the bacterial numbers were adjusted according to cultures' optical densities (OD_{600}). The bacteria were collected by centrifugation at 10,000 rpm for 3 min, and then pellets were washed three times with ddH₂O. After the final wash, the bacteria were resuspended in the water in which the catfish fry were held. Four *E. ictaluri* cultures were added into four fry containers randomly to give a concentration of 1 x 10⁷ CFU/ml water (Karsi et al., 2006). The remaining four *E. ictaluri* cultures (control) were added to the remaining containers without fry. The bacteria and fry were incubated for 3 h at room temperature under aeration. At the end of the incubation, the bacteria were collected by centrifugation and were stabilized immediately using two volumes of RNAprotect Bacterial Reagent (Qiagen). After stabilization, the samples were centrifuged at 4,000 rpm for 20 min and the bacteria were resuspended in 4 ml of RNAprotect Bacterial Reagent. Aliquots of the stabilized bacteria were prepared and stored at - 80 °C until RNA extractions.

Results and Discussion

Analysis of gene expression profiles in *Ei*AKMut02

Through microarray data analysis 2.2% of the *E. ictaluri Ei*AKMut02 genes (82 DEGs) significantly changed their expression level compared to *E. ictaluri* wt when they encountered with catfish fry (p < 0.05 and FC > 2). 13 genes were up-regulated (Table 4.1), and 69 genes were down-regulated (Table 4.2). The greatest fold change for up-regulated genes was 2.4 fold. The greatest fold change for down-regulated genes was 3 fold. The expression of all 13 up-regulated genes was increased 2-2.5 fold compared to *E. ictaluri* wt following host encounter. Of 69 down-regulated genes, 7 genes were down-

regulated from 2.5 to 3 fold following host encounter; 62 genes were down-regulated

from 2.5 to 3 fold.

GI	FC	P value	Protein_Product	GeneName
238921446	2.40	0.00	30S ribosomal protein S7, putative	EiORF_3598
238919616	2.30	0.01	Hypothetical protein	EiORF_1715
238921088	2.26	0.00	Ribosomal protein S16, putative	EiORF_3223
238921428	2.26	0.00	Hypothetical protein	EiORF_3580
238921429	2.17	0.01	Hypothetical protein	EiORF_3581
238920265	2.16	0.01	Hypothetical protein	EiORF_2374
238921447	2.11	0.01	30S ribosomal protein S12, putative	EiORF_3599
238921426	2.06	0.00	50S ribosomal protein L18, putative	EiORF_3578
238921430	2.06	0.01	50S ribosomal protein L5	EiORF_3582
238921445	2.03	0.00	Hypothetical protein	EiORF_3597
238919586	2.01	0.00	Outer membrane protein W	EiORF_1685
238919013	2.01	0.01	Hypothetical protein	EiORF_1079
238921420	2.00	0.00	30S ribosomal protein S4 (BS4)	EiORF_3571

Table 4.1Up-regulated genes in *Ei*AKMut02 compared to wild type during host
encounter

Table 4.2	Down-regulated genes in EiAKMut02 mutant strain compared to wild type
	during host encounter

GI	FC	P value	Protein_Product	GeneName
238919899	-2.00	0.02	Hypothetical protein	EiORF_2003
238918259	-2.00	0.04	Hypothetical protein	EiORF_0296
238918158	-2.00	0.01	Hypothetical protein	EiORF_0194
238918457	-2.01	0.02	Hypothetical protein	EiORF_0501
238920228	-2.01	0.04	Hypothetical protein	EiORF_2337
238918508	-2.01	0.01	Pyruvate formate lyase-activating enzyme	EiORF_0558
238918159	-2.01	0.02	Hypothetical protein	EiORF_0195
238919240	-2.01	0.01	Hypothetical protein	EiORF_1328
238920400	-2.01	0.02	Drug resistance transporter, Bcr/cfla family	EiORF_2510
238919429	-2.01	0.02	Hypothetical protein	EiORF_1523
238921507	-2.01	0.03	Hypothetical protein	EiORF_3659
			Type I restriction-modification system, R	
238918024	-2.01	0.02	subunit	EiORF_0043
238919663	-2.02	0.01	Hypothetical protein	EiORF_1764
238920863	-2.03	0.01	Hypothetical protein	EiORF_2989
238921273	-2.04	0.04	Inner membrane protein yhjx	EiORF_3416
238920189	-2.06	0.01	Hypothetical protein	EiORF_2298

238918654	-2.06	0.02	ABC-type multidrug efflux pump	EiORF_0712
238919474	-2.07	0.03	Hypothetical protein	EiORF_1568
238920043	-2.07	0.03	Hypothetical protein	EiORF 2147
238918278	-2.07	0.01	Hypothetical protein	EiORF_0315
238918813	-2.08	0.03	Hypothetical protein	EiORF_0876
238920554	-2.08	0.03	Hypothetical protein	EiORF_2666
238918281	-2.09	0.02	Hypothetical protein	EiORF_0318
238920301	-2.09	0.04	Hypothetical protein	EiORF_2411
238918081	-2.10	0.02	ECA biosynthesis protein wzye	EiORF_0100
238919439	-2.10	0.01	Hypothetical protein	EiORF_1533
238919940	-2.11	0.02	Hypothetical protein	EiORF_2044
238919941	-2.12	0.01	Hypothetical protein	EiORF_2045
238921167	-2.12	0.01	Hypothetical protein	EiORF_3308
238918181	-2.12	0.01	Hypothetical protein	EiORF_0217
238918293	-2.13	0.03	Hypothetical protein	EiORF_0330
238918296	-2.13	0.04	Hypothetical protein	EiORF_0333
238921151	-2.13	0.03	Hypothetical protein	EiORF_3292
238919925	-2.13	0.02	Hypothetical protein	EiORF_2029
238918460	-2.14	0.02	Altronate hydrolase	EiORF_0504
238921475	-2.14	0.01	Hypothetical protein	EiORF_3627
238920954	-2.14	0.04	Hypothetical protein	EiORF_3084
238921577	-2.16	0.04	Hypothetical protein	EiORF_3730
238920717	-2.16	0.01	Biotin synthase, putative	EiORF_2830
238918017	-2.16	0.03	Hypothetical protein	EiORF_0036
			Thiamine ABC transporter, ATP-binding	
238918647	-2.17	0.01	protein, putative	EiORF_0704
238919342	-2.19	0.01	Hypothetical protein	EiORF_1434
238919927	-2.19	0.02	Replication of DNA	EiORF_2031
9230686	-2.20	0.02	Unknown	pEI1
238921338	-2.22	0.02	Hypothetical protein	EiORF_3482
238921170	-2.23	0.02	Hypothetical protein	EiORF_3311
238920986	-2.25	0.02	Hypothetical protein	EiORF_3116
238918225	-2.26	0.02	Hypothetical protein	EiORF_0261
238919463	-2.27	0.01	Hypothetical protein	EiORF_1557
238919960	-2.29	0.01	Hypothetical protein	EiORF_2064
238920091	-2.31	0.04	Hypothetical protein	EiORF_2197
238919759	-2.32	0.01	Hypothetical protein	EiORF_1863
238920949	-2.33	0.01	Hypothetical protein	EiORF_3079
238921272	-2.35	0.01	Hypothetical protein	EiORF_3415
238919749	-2.38	0.03	Hypothetical protein	EiORF_1853
			Ascorbate-specific permease iic component	t
238921506	-2.39	0.02	ulaa	EiORF_3658
238918276	-2.40	0.03	Arginine repressor, C- domain protein	EiORF_0313
238919951	-2.42	0.02	Ammonium transporter	EiORF_2055
238918260	-2.46	0.01	Hypothetical protein	EiORF_0297
		0.00	Molybdate ABC transporter, permease prot	tein,
238920722	-2.46	0.03	putative	EIORF_2835
238920136	-2.46	0.01	Hypothetical protein	EIORF_2242
238919961	-2.49	0.02	Hypothetical protein	EIORF_2065
238920715	-2.50	0.01	Biotin biosynthesis protein bioc	E10RF 2828

Table 4.2 (Continued)

238918020	-2.51	0.01	Transposase A	EiORF_0039
238920944	-2.51	0.01	Hypothetical protein	EiORF_3074
238921700	-2.62	0.03	Hypothetical protein	EiORF_3861
238921180	-2.62	0.01	Hypothetical protein	EiORF_3321
238920836	-2.78	0.02	Hypothetical protein	EiORF_2962
238919102	-3.04	0.01	Hypothetical protein	EiORF_1173

Table 4.2 (Continued)

Blast2GO

35 out of 82 differentially expressed genes have been annotated by Blast2GO (Appendix E). The top hits from BLASTP results showed that 79 DEGs match to *E. ictaluri*; 2 DEGs match to *E. tarda*; 1 DEG matches to *Clostridium carboxidivorans*. The total number of GO terms is 155 including 50 biological process terms (32.3%), 35 cellular component terms (22.6%), and 70 molecular function terms (45.2%). Annotated sequences were assigned to gene ontologies according to biological process (Figure 4.1), cellular component (Figure 4.2), and molecular function (Figure 4.3) at level 2.

Figure 4.1 GO terms at level 2 according to biological process

Figure 4.2 GO terms at level 2 according to cellular component

Figure 4.3 GO terms at level 2 according to molecular function

The results showed that the most common annotation terms in these three GO categories were cellular process, metabolic process, localization, cell, organelle, macromolecular complex, binding, catalytic activity, transporter activity, and structural molecule activity.

PSORTb

All 34 out of 82 DEGs were localized into six cellular locations: cytoplasmic, periplasmic, cytoplasmic membrane, extracellular, outer membrane, and unknown. (Figure 4.4).

Figure 4.4 Bacterial localization prediction by PSORTb.

The digits on top are the number of DEGs down-regulated and the digits on the bottom are the number of DEGs up-regulated.

The result showed that only one gene, encoding outer membrane protein W (GI238919586), was located on outer membrane of *E. ictaluri*. The function of ompW in *E. ictaluri* is worth studying further because an ompW mutant of *V. cholera* 0139 strain SG25 by insertion caused a 10-fold reduction in colonization ability.

HPIDB (Host Pathogen Interaction DataBase)

The top hit result showed that 11 of 82 DEGs from this study were identified to be involved in host pathogen PPIs (Table 4.3). 9 of these 11 DEGs were involved in host pathogen PPIs in *Yersinia pestis*; 1 was found in *Bacillus anthracis*, and 1 in *Francisella*

tularensis subsp. tularensis (strain SCHU S4 / Schu 4); 71 DEGs were not found being involved in host pathogen PPIs.

Query id	e-value	Bit score	Organism	Protein product
238918647	7.00E-35	142	Bacillus anthracis	Thiamine ABC transporter, ATP-binding protein, putative
238920717	1.00E-88	322	Francisella tularensis	Biotin synthase, putative
238918020	3.00E-16	78.6	Yersinia pestis	Transposase A
238918081	0	682	Yersinia pestis	ECA biosynthesis protein wzye
238918460	0	776	Yersinia pestis	Altronate hydrolase
238920265	2.00E-67	250	Yersinia pestis	Hypothetical protein
238920400	2.00E-33	139	Yersinia pestis	Drug resistance transporter, Bcr/cfla family
238920722	1.00E-31	131	Yersinia pestis	Molybdate ABC transporter, permease protein, putative
238921167	1.00E-22	103	Yersinia pestis	Hypothetical protein
238921445	0	1299	Yersinia pestis	Hypothetical protein
238921506	3.00E-46	182	Yersinia pestis	Ascorbate-specific permease iic component ulaa

Table 4.3DEGs involved in host pathogen PPIs

MVirDB (Microbe Virulence DataBase)

5 DEGs have been identified to be potential virulence factors in *E. ictaluri Ei*AKMut02 compared to wt during fish host encounter with a percent identity greater than 20% and an e-value less than 1E - 20. These five genes were protein STY4523, elongation factors GTPases, type IV pilus operon lipoprotein, PTS system enzyme IIC, and III ABC transporter ATP-binding protein (Table 4.4).

Table 4.4	Potential virulence factors identified in MVirDB in <i>Ei</i> AKMut02 compared
	to wt during host challenge.

Query	Number of hits	Lowest E- value	Description	Greatest identity %
238918281	10	2.15E-123	protein STY4523 [Salmonella enterica subsp. enterica serovar Typhi str. CT18]	44
238921445	45	4.25E-67	elongation factors GTPases	44
238918293	10	5.97E-35	type IV pilus operon lipoprotein [Yersinia enterocolitica subsp. enterocolitica 8081]	49
238921506	1	1.30E-30	PTS system enzyme IIC [Streptococcus agalactiae NEM316]	24
238918647	209	2.99E-26	III ABC transporter ATP-binding protein [Haemophilus influenzae Rd KW20]	

Potential virulence factors and KEGG pathway

The results from Blast2GO, PSORTb, HPIDB, and MVirDB were compared with each other. The common DEGs appearing in multiple databases could contribute to the virulence of *E. ictaluri Ei*AKMut02 strain. Six DEGs were identified to be potential virulence factors (Table 4.5).

Table 4.5Virulence factors found in multiple databases

GI	Protein Product	Database
238921506	ascorbate-specific permease iic component ulaa	MVirDB/PSORTb/HPIDB/B2G
238918647	thiamine ABC transporter, ATP-binding protein, putative	MVirDB/PSORTb/HPIDB/B2G
238921445	hypothetical protein	MVirDB/HPIDB/B2G
238918081	ECA biosynthesis protein WzyE	HPIDB/PSORTb/B2G
238920400	drug resistance transporter, Bcr/CfIA family	HPIDB/PSORTb/B2G
238920722	molybdate ABC transporter, permease protein, putative	HPIDB/PSORTb/B2G

Three genes have been found in pathways through further analysis in KEGG pathway database. These three genes were ascorbate-specific permease iic component ulaA (GI238921506), thiamine ABC transporter/ATP-binding protein (GI238918647),

and molybdate ABC transporter/permease protein (GI238920722). *ulaA* has been found in two pathways: ascorbate and aldarate metabolism (eic_00053) and phosphotransferase system (PTS; eic_02060) pathways. UlaA protein can degrade ascorbate to D-xylulose-5P (eic_M00550) and is a component of PTS system and/or ascorbate-specific II (eic_M00283). *ulaA* belongs to the *ula* regulon, which consists of *ulaABCDEF* and is responsible for the utilization of L-ascorbate in *E. coli* (Yew and Gerlt, 2002). The function of the *ula* regulon was repressed by glucose through at least two mechanisms: cyclic AMP-cAMP receptor protein (cAMP-CRP) dependent and cAMP-CRP independent (Campos et al., 2004). Low level of utilizing L-ascorbate may be the reason why this *E. ictaluri* mutant's virulence was reduced because *ulaA* gene was downregulated in *Ei*AKMut02 compared to *E. ictaluri* wt during host encounter.

Thiamine ABC transporter encoded by *thiQ* has been found in ABC transporters pathway and functions in thiamine transport system (eic_M00189). *thiQ* is an ATPase and a part of *thiBPQ* operon in *Salmonella typhimurium*, which was designed as *sfuABC* in *E coli*. Its protein product was required for the transport of thiamine and thiamine pyrophosphate (TPP) into the cells since the insertion mutation in *thiBPQ* operon caused defective in thiamine and TPP transport (Webb et al., 1998). The down-regulation of *thiQ* (down-regulated 2.17 FC) may suggest that *thiBPQ* operon was affected by *gcvP* mutation or that the infection in catfish may need low levels of thiamine or TPP inside the bacterium.

Molybdate ABC transporter permease has been found in ABC transporter pathway also, and functions in molybdate transport system (eic_M00189). Recently, the crystal structure of some ABC transporters, including type I ABC importer, and type II

ABC importer and ABC exporter, were made available (Locher, 2009). The molybdate/tungstate transporter ModBC from *A. fulgidus* is one of the type I ABC importers (Hollenstein et al., 2007). Vitamin B12 transporter BtuCD from *E. coli* (Locher et al., 2002), the metal-chelate-type transporter HI1470/1 from *H. influenza* (Pinkett et al., 2007), and BtuCD-F (Hvorup et al., 2007), are the three type II ABC importers with known crystal structure. The first high-resolution crystal structure of an ABC exporter is the multidrug transporter Sav1866 from *S. aureus* (Dawson and Locher, 2006). The signature sequence of the molybdate ABC transporter permease was identified to be located in the cytoplasmic loop between two transmembrane regions and might function in molybdate/tungstate without its binding protein in *E. coli* (Self et al., 2001).

CHAPTER V

GLOBAL GENE EXPRESSION ANALYSIS OF *Ei*AKMut02 MUTANT'S RESPONSE TO SPF CATFISH SERUM TREATMENT

Abstract

Edwardsiella ictaluri is the etiological agent of enteric septicemia of catfish, but its pathogenic mechanisms have not been understood completely. An *E. ictaluri gcvP* mutant (*Ei*AKMut02) has been produced in our lab and shown that it is completely attenuated and highly protective in catfish fingerlings. The *gcvP* is part of the glycine cleavage system, and we have shown that it is important for both neutrophil and serum resistance in *E. ictaluri*. To better understand importance of the *gcvP* in *E. ictaluri* virulence, we compared the global gene expression between the *E. ictaluri* wt and *gcvP* mutant after serum exposure. Our results showed that 296 genes in *Ei*AKMut02 have been differentially expressed (108 up-regulated and 188 down-regulated genes) post SPF serum exposure. Functional analysis has been performed on all differentially expressed genes with Blast2GO, PSORTb, HPIDB, and MVirDB. We have identified four virulence relevant factors, which are flagellar basal body L-ring protein, outer membrane protein N2, outer membrane protein N3, and ABC transporter/ATP binding protein.

Introduction

E. ictaluri is the causative pathogen of enteric septicemia of catfish (ESC) and is a Gram-negative facultative rod-shaped bacterium belonging to Enterobacteriaceae (Hawke, 1979; Hawke et al., 1981). Though many virulence factors have been identified by different research groups (Cooper et al., 1996; Lawrence et al., 2003; Lawrence et al., 2001; Morrison and Plumb, 1994; Skirpstunas and Baldwin, 2003; Stanley et al., 1994; Thune et al., 2007), ESC is still a devastating disease in catfish industry. Our previous research has shown that *Ei*AKMut02 mutant with *gcvP* insertion mutation is completely attenuated in catfish fingerlings. gcvP encodes a protein that is part of glycine cleavage system. The glycine cleavage system includes four subunits and this enzyme complex catalyzes glycine oxidation reversibly to form 5, 10-methylenetetrahydrofolate. 5, 10methylenetetrahydrofolate is one of two sources of one carbon donor while the other one is serine hydroxymethyltransferase. Glycine can induce the expression of the glycine cleavage enzyme system (Meedel and Pizer, 1974; Stauffer et al., 1994). gcvP mutants cannot use glycine as a one carbon source and excrete glycine (Plamann et al., 1983). E. *ictaluri gcvP* is located downstream of *gcvH* and *gcvT*. *gcvP* is the third gene in the three gene operon which encodes subunits of the glycine cleavage system. The disturbance of gcvP function in EiAKMut02 resulted in significant reduced resistance to both catfish neutrophils and catfish serum compared to wt (Karsi et al., 2009). Thus, in order to investigate the effect of gcvP mutation on E. ictaluri during the early stage of infection in catfish, we conducted microarray experiment in *Ei*AKMut02 and wt *E. ictaluri*.

Materials and methods

Bacterial strains and growth condition

In this study, the wild type strain of *Edwardsiella ictaluri* 93-146 and *Ei*AKMut02 mutant were used (Karsi et al., 2009; Lawrence et al., 1997). *Ei*AKMut02 is a mutant of *E. ictaluri* 93-146, which was constructed by transposon insertion to the gene *gcvP* (Karsi et al., 2009). Both strains were grown in brain heart infusion (BHI) (Difco) agar and broth at 30 °C. Ampicillin (100 μ g/ml), colistin (12.5 μ g/ml) and gentamycin (12.5 μ g/ml) antibiotics were added to growth medium when needed.

Experimental procedures

Experimental fish, serum preparation, serum exposure assay, total RNA purification, cDNA synthesis, microarray experiments, and bioinformatic analysis have been conducted as described in chapter III.

Results and Discussion

Gene expression profiles of *Ei*AKMut02 following catfish serum exposure

296 genes were differentially expressed significantly in *Ei*AKMut02 compared to *E. ictaluri* wt strain when they were exposed to naïve catfish serum. The parameters to define DEGs were a p < 0.05 and a fold change > 1.5. The percentage of differentially expressed genes in *E. ictaluri* genome was 8.04%. 108 genes were up-regulated (Appendix F), while 188 genes were down-regulated (Appendix G) in *E. ictaluri Ei*AKMut02. The greatest fold change of up-regulated genes was 3. The greatest fold change of down-regulated genes, 32 genes were up-regulated from 2 to 3 fold; 76 genes were up-regulated from 1.5 to 2 fold compared to

E. ictaluri wt. Among 188 down-regulated genes, 8 genes were down-regulated from 3 to 4 fold; 44 genes were down-regulated from 2 to 3 fold; 136 genes were down-regulated from 1.5 to 2 fold compared to *E. ictaluri* wt.

Blast2GO

216 DEGs have been annotated by Blast2GO (Appendix H). A total of 908 annotations were found through Blast2GO including 306 biological terms (33.7%), 144 cellular component terms (15.9%), and 458 molecular function terms (50.4%). The top hits for BLASTP results showed that 289 DEGs matched to *E. ictaluri*, 3 DEGs matched to *E. tarda*, and 1 DEG matched to *Escherichia coli*, *Klebsiella sp.* and *Clostridium carboxidivorans*. Annotated sequences were assigned to gene ontologies according to biological process (Figure 5.1), cellular component (Figure 5.2), and molecular function (Figure 5.3). The results showed that metabolic process, cellular process, localization, biological regulation, response to stimulus, cell, macromolecular complex, organelle, catalytic activity, binding, transporter activity, structural molecule activity, and electron carrier activity were the most common annotation terms in these three GO categories.

Figure 5.1 GO based on biological process for *Ei*AKMut02 and wt under serum exposure at level 2

Figure 5.2 GO based on cellular component for *Ei*AKMut02 and wt under serum exposure at level 2

Figure 5.3 GO based on molecular function for *Ei*AKMut02 and wt under serum exposure at level 2

PSORTb

There were 209 (70.6%) DEGs in this study whose bacterial localization have been predicted (Figure 5.4).

Figure 5.4 Bacterial localization prediction of 296 DEGs in *Ei*AKMut02 compared to wt under serum exposure by PSORTb.

The digits on top are the number of DEGs down-regulated, and the digits on the bottom are the number of DEGs up-regulated.

The results showed that 133 DEGs are located in cytoplasmic; 8 DEGs are located in periplasmic; 63 DEGs are located on cytoplasmic membrane; 3 DEGs are located in extracellular; 6 DEGs are located on outer membrane of *Ei*AKMut02; and 87 DEGs localizations have not been predicted. Outer membrane proteins are considered to be important for the virulence of bacterial pathogens. The 6 DEGs predicted to be located on *E. ictaluri* outer membrane are listed in Table 5.1.

Table 5.1DEGs located on outer membrane of *Ei*AKMut02 compared to wt under
SPF serum exposure

GI	Protein produt	Localization	Score
gi 238918213 ref YP_002931727.1	Hypothetical protein NT01EI_0249	OuterMembrane	9.52
gi 238918804 ref YP_002932318.1	Lipoprotein involved with copper homeostasis and adhesion	OuterMembrane	9.93
gi 238919262 ref YP_002932777.1	Flagellar basal body L-ring protein	OuterMembrane	9.92
gi 238919771 ref YP_002933286.1	Outer membrane protein N	OuterMembrane	10
gi 238919996 ref YP_002933511.1	Outer membrane lipoprotein pcp	OuterMembrane	9.93
gi 238921673 ref YP_002935188.1	Outer membrane protein N	OuterMembrane	10

HPIDB (Host Pathogen Interaction DataBase)

The top hit result showed that 43.6% (129) of DEGs in this study were involved in host pathogen interaction (Appendix I). 73 DEGs were matched to *Yersinia pestis*, 24 to *Bacillus anthracis*, 17 to *Francisella tularensis subsp. tularensis* (strain SCHU S4 / Schu 4), 1 to *Saccharomyces cerevisiae* (strain ATCC 204508 / S288c), and 1 to *Shigella flexneri*. The remaining 13 DEGs match to *Homo sapiens* and *Mus musculus*.

MVirDB (Microbe Virulence DataBase)

The protein sequences of 296 DEGs have been blasted against MVirDB database.

We have considered the DEGs as virulence related genes in E. ictaluri if its percent

identity is greater than 20% with an e-value less than 1E - 20. In EiAKMut02, 42 DEGs

were matched to virulence factors from other pathogenic bacteria (Table 5.2).

Query	Greatest identity %	Lowest E- value	Description	
	_		Heptose 7-phosphate kinase/heptose 1-phosphate	
gi 238918492	67	0.00E+00	adenyltransferase [Haemophilus influenzae Rd KW20]	
			Full=Phosphoenolpyruvate-protein phosphotransferase;	
:1220040472	100	0.005.00	EC=2.7.3.9; altname: Full=Phosphotransferase system, enzyme	
gi 238919172	100	0.00E+00	l;	
gi 238919742	88	0.00E+00	Kinase [Salmonella typhimurium LT2]	
	100		Full=Urease subunit alpha; EC=3.5.1.5; altname: Full=Urea	
gi 238919957	100	0.00E+00	amidohydrolase subunit alpha;	
øil238920314	83	0 00F+00	ATP synthase [Yersinia enterocolitica subsp. Enterocolitica 8081]	
gi 238921110	73	0.00E+00	Mismatch repair protein [Salmonella typhimurium LT2]	
gi 238921570	67	0.00E+00	Transporter [Salmonella typhimurium LT2]	
gi 238920853	66	9.33E-163	Protein [Escherichia coli]	
gi 238920246	51	1.39E-144	Repeat-containing protein [Salmonella typhimurium LT2]	
			Full=Export membrane protein secf; subname: Full=Protein-	
gi 238918975	100	6.58E-144	export membrane protein secf;	
gi 238919771	100	2.58E-132	Full=Outer membrane protein S2; Flags: Precursor;	
gi 238920284	41	5.21E-96	Synthetase D [Pseudomonas aeruginosa PAO1]	
gi 238920346	57	5.90E-96	Pilk [Pseudomonas aeruginosa PAO1]	
gi 238918051	58	2.07E-93	Heptosyltransferase I [Pseudomonas aeruginosa PAO1]	
gi 238918052	49	4.03E-92	II [Pseudomonas aeruginosa PAO1]	
gi 238918863	69	2.17E-90	Protein [Escherichia coli]	
			Full=Outer membrane protein F; altname: Full=Porin ompf;	
gi 238921673	76	1.04E-88	Flags: Precursor;	
gil 229010262	04	1 105 00	Basal body L-ring protein [Yersinia enterocolitica subsp.	
gi 230919202	54	4.40L-00	Component of hydroxymate-dependent iron ABC transporter	
gi 238919298	88	1.40E-87	[Yersinia pestis KIM]	
			Membrane receptor for ferric iron uptake [Escherichia coli	
gi 238918568	57	1.77E-62	O157:H7 EDL933]	
gi 238920969	36	4.53E-60	S1C unassigned peptidase, has signal peptide	
gi 238918653	48	1.47E-59	Protein [Escherichia coli]	
gi 238920852	49	9.28E-59	Protein SA0116 [Staphylococcus aureus subsp. Aureus N315]	
gi 238920016	50	5.48E-58	Synthase component I [Escherichia coli CFT073]	

Table 5.242 potential virulence factors identified from the 296 DEGs in *Ei*AKMut02
post SPF catfish serum exposure

Table 5.2 (Continued)

gi 238921392	85	4.87E-55	Iron transport lipoprotein sirf [Staphylococcus aureus subsp. Aureus Mu50]
gi 238919490	30	3.23E-50	Full=SBT1 protein; subname: Full=Subtilisin-like protease;
gi 238918413	50	2.72E-48	Transcriptional regulator basr [Salmonella typhimurium LT2]
gi 238920924	47	4.48E-48	Resistance protein [Bordetella pertussis Tohama I]
gi 238920344	100	6.27E-47	Full=Integration host factor subunit beta; Short=IHF-beta;
gi 238918177	67	3.05E-46	Protein psie [Yersinia pestis CO92]
gi 238918421	100	4.72E-43	Full=Protein-export membrane protein secg; altname: Full=P12; altname: Full=Preprotein translocase band 1 subunit;
gi 238920481	45	6.01E-43	Full=Phosphotransferase system transporter enzyme I, frui;
gi 238920290	60	8.98E-39	III transport ATP binding protein sfuc like
gi 238918036	55	3.91E-37	Repair protein radc, putative [Vibrio cholerae O1 biovar El Tor str. N16961]
gi 238921255	38	4.82E-34	[Mycobacterium tuberculosis H37Rv]
gi 238920367	34	1.20E-30	Full=Epstein-Barr virus nuclear antigen EBNA-3C ;
gi 238921410	34	1.74E-29	Biosynthesis regulator flhf [Campylobacter jejuni subsp. Jejuni NCTC 11168]
gi 238918945	28	6.56E-29	Methylase hsdm, putative [Vibrio cholerae O1 biovar El Tor str. N16961]
gi 238918213	37	5.92E-25	Factor Hek [Escherichia coli]
gi 238920907	39	1.34E-24	Elongation factors gtpases
gi 238919371	44	9.59E-24	Receptor, binds flim, causes tumbling
gi 238921701	41	1.78E-22	Full=Putative general secretion pathway protein H;

Virulence factors and KEGG pathway

The differentially expressed genes in *Ei*AKMut02 compared to wt under serum exposure were analyzed with Blast2GO, PSORTb, HPIDB, and MVirDB. From the results, 15 virulence factors were identified (Table 5.3). Pathway analysis was conducted for these 15 virulence genes in the KEGG pathway database. 6 genes were identified in 6 different pathways (Table 5.4).

GI	Protein product	Locus Taq
238921570	Mg2+ transporter mgtb, putative	NT01EI_3723
238920246	Leucine-rich repeat protein	NT01EI_2355
238918975	Protein-export membrane protein secf, putative	NTO1EI_1042
238919771	Outer membrane protein N	NT01EI_1875
238921673	Outer membrane protein N	NT01EI_3834
238919262	Flagellar L-ring protein flgh, putative	NT01EI_1352
238918653	Hypothetical protein	NT01EI_0711
238920314	Flil; flagellum-specific ATP synthase, putative	NT01EI_2424
238920284	Hypothetical protein	NT01EI_2394
238918177	Hypothetical protein	NT01EI_0213
238918421	Preprotein translocase, secg subunit, putative	NT01EI_0462
238920290	ABC transporter, ATP-binding protein, putative	NT01EI_2400
238920367	Anaerobic dimethyl sulfoxide reductase chain A, putative	NT01EI_2477
238921701	GTP-binding protein typa/bipa, putative	NT01EI_3862
238919371	Hypothetical protein(K03413 two-component system, chemotaxis family, response regulator chey)	NT01EI_1465

Table 5.3Virulence factors identified through functional analysis in *Ei*AKMut02 after
catfish serum exposrue

 Table 5.4
 Pathways represented in *Ei*AKMut02 after exposure to catfish serum

GI	Locus Taq	Pathway	Module
238918975	NT01EI 1042	Protein export (eic03060)	Sec (secretion) system (eic_M00335)
	_	Bacterial secretion system (eic03070)	N/A
238919262	NT01EI_1352	Flagellar assembly (eic02040)	N/A
238920314	NT01EI_2424	Flagellar assembly (eic02040)	N/A
238918421 N	NT01EI 0462	Protein export (eic03060)	Sec (secretion) system (eic_M00335)
	_	Bacterial secretion system (eic03070)	N/A
238920290	NT01EI_2400	ABC transporters (eic02010)	Cystine transport system (eic_M00234)
238919371	NT01EL 1465	Two-component system (eic02020)	N/A
	INTUTE1_1403	Bacterial chemotaxis (eic02030)	N/A

SecF (GI238918975) and SecG (GI238918421) play roles in protein export

(eic_03060) and bacterial secretion system (eic_03070) pathways. SecF and SecG

contribute to sec (secretion) system (eic_M00335) based on module information. SecF together with SecD stabilize the inserted state of SecA in *E. coli* membrane (Economou et al., 1995). It was also reported that SecF and secD function together to stimulate protein export in *E. coli* (Pogliano and Beckwith, 1994). Deletion study of SecF and SecD in *E. coli* showed that SecF/D played roles in translocation of proteins, especially pro-proteins, into inverted inner membrane vesicles. SecF/D may also help maintain a proton electrochemical gradient in *E. coli* (Arkowitz and Wickner, 1994; Matsuyama et al., 1992). SecG is a component of *E. coli* preprotein translocase and makes the enzyme highly efficient through topology inversion (Nishiyama et al., 1996). SecG was identified to be a subunit of a trimeric complex of SecYEG, which was one membrane embedded part of preprotein translocase in *E. coli*. SecG was also found functioning in protein translocation directly in *E. coli* especially at low temperature (Nishiyama et al., 1994).

FlgH (GI238919262) and FliI (GI238920314) are involved in flagellar assembly pathway (eic_02040). FlgH was confirmed to be a lipoprotein and functions as the outermembrane L-ring protein of the flagellar basal body in *Salmonella typhymurium* (Schoenhals and Macnab, 1996). FlgH is not necessary in all bacteria such as *Firmicutes* and *Spirochaetes* (Liu and Ochman, 2007). *fliI* is a component of the operon FliHIOPQR (Desvaux et al., 2006) and functions as the ATPase of the flagellar export apparatus (Fan and Macnab, 1996). To fully exert its ATPase activity, FliI ATPase forms a homohexameric ring structure (Claret et al., 2003; Minamino et al., 2006). FliL was found to be a component of the basal body and is located in the cytoplasmic membrane in Salmonella (Schoenhals and Macnab, 1999).

ABC transporter/ATP-binding protein (GI238920290) functions in ABC

transporters pathway (eic_02010) and contributes to cystine transport system (eic_M00234) based on module search. A hypothetical protein (GI238919371) functions in both two-component system (eic_02020) and bacterial chemotaxis (eic_02030), which suggests that it may be important for the survivability of *E. ictaluri* inside and outside of the host.

CHAPTER VI

CONSTRUCTION AND EVALUATION OF ELEVEN *E. ICTALURI* IN-FRAME DELETION MUTANTS

Abstract

E. ictaluri is the etiological agent of enteric septicemia of catfish (ESC). Use of antibiotics as food additive is not effective since the first clinical sign of ESC is anorexia. In addition, antibiotic treatment may cause antibiotic resistant strains. Live attenuated vaccines have the potential as an alternative prevention method against ESC. However, only one commercial vaccine is available, and ESC is still the most prevalent disease of catfish industry. Here, we present the vaccine potential of novel *E. ictaluri* mutants. We have constructed 11 *E. ictaluri* mutants by in-frame deletion and have tested their virulence and efficacy in 8-week old channel catfish fingerlings by immersion challenge. Fish mortality data indicated that *yscR* and *ssaV* mutants were completely attenuated while the other 9 showed less or no attenuation compared to wild type strain. Efficacy testing indicated that *yscR* and *ssaV* mutants provided moderate protection compared to sham vaccinated group (94.05% mortality) since the relative percent survivals of fingerlings vaccinated with *yscR* and *ssaV* mutants were 42.90% and 40.09%, respectively. Our results support that the T3SS is important in *E. ictaluri* virulence.

Introduction

Enteric septicemia of catfish (ESC) is one of the most important diseases in the farm-raised channel catfish (*Ictalurus punctatus*) industry. ESC has been found in all states where catfish are raised. For the control of enteric septicemia, Romet, Terramycin and Aquaflor antibiotics may be applied as food additive. Though these antibiotics have the potential to prevent the spread of the ESC, they may not be effective to cure ESC as sick catfish become anorexic. Furthermore, new antibiotic resistant strains could develop. Thus, live attenuated vaccines are the alternative to control ESC. One commercial vaccine is available, but ESC is still the most prevalent disease in catfish aquaculture. More work is needed to develop safer and more immunogenic vaccines for ESC. As an extension of our work described in the previous chapters where we have identified potential virulence genes, here we report development and vaccine potential of 11 new mutants.

Materials and methods

Bacterial strains and plasmids

The wild type strain of *E. ictaluri* 93-146 was used as the parent strain to construct *E. ictaluri* mutants. Brain Heart Infusion (BHI) agar and broth (Difco, Sparks, MD) containing 12.5 µg/ml of colistin (Sigma) was used for culturing *E. ictaluri* parent strain and mutants colonies. *E. ictaluri* cultures were incubated at 30 °C at 200 rpm with aeration. *E. coli* CC118, and SM10 λpir were used in cloning and conjugal transfer of suicide plasmid into *E. ictaluri*, respectively. *E. coli* strains were grown using LB broth and agar (Difco, Sparks, MD) at 37 °C for 18 h in a shaker incubator at 200 rpm.

Suicide plasmid pMEG-375 (*sacRB mobRP4* R6K *ori* Cm^r Amp^r) was used as the vector to generate and introduce in-frame deleted genes into *E. ictaluri* chromosome by allelic exchange. pMEG-375 includes ampicillin and chloramphenicol markers for the first step of mutant screening after the plasmid integrated into *E. ictaluri* genome. pMEG-375 also has *Bacillus subtilis sacB* gene encoding levane saccharase, which is lethal in most Gram-negative bacteria in the presence of sucrose (Gay et al., 1983). *sacB* gene is used for the secondary screening of mutant strains in which the plasmid was excised from *E. ictaluri* genomic DNA when they grew in a media containing sucrose. All strains and plasmids used and constructed in this study are listed in Table 6.1.

Relevant Characteristics	References
Wild type; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r	(Lawrence et al., 1997)
93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; Δ <i>malE</i>	This study
93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; Δ <i>typA</i>	This study
93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; Δ <i>lamB</i>	This study
93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; Δ <i>blc</i>	This study
93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; Δ <i>ssaV</i>	This study
93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; Δ <i>yscR</i>	This study
93146 derivative; $pEI1^+$; $pEI2^+$; Col^r ; $\Delta ompW$	This study
93146 derivative; $pEI1^+$; $pEI2^+$; Col^r ; $\Delta ompN$	This study
93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; Δ <i>gpmA</i>	This study
93146 derivative; $pEI1^+$; $pEI2^+$; Col^r ; $\Delta hp2312$	This study
93146 derivative; $pEI1^+$; $pEI2^+$; Col^r ; $\Delta hp3311$	This study
	Relevant Characteristics Wild type; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r 93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; $\Delta malE$ 93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; $\Delta typA$ 93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; $\Delta lamB$ 93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; Δblc 93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; $\Delta ssaV$ 93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; $\Delta sscR$ 93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; $\Delta ompW$ 93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; $\Delta ompN$ 93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; $\Delta ompN$ 93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; ΔpmA 93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; $\Delta hp2312$ 93146 derivative; pEI1 ⁺ ; pEI2 ⁺ ; Col ^r ; $\Delta hp3311$

Table 6.1Bacterial strains and plasmids

Table 6.1 (Continued)

Escherichia coli

CC118λ <i>pir</i>	$\Delta(ara-leu); araD; \Delta lacX74; galE; galK; phoA20;$	(Herrero et al., 1990)
	<i>thi-1</i> ; <i>rpsE</i> ; <i>rpoB</i> ; <i>argE</i> (Am); <i>recAl</i> ; λ <i>pir</i> R6K	
SM10λ <i>pir</i>	thi; thr; leu; tonA; lacY; supE; recA; ::RP4-2-	(Miller and Mekalanos, 1988)
	Tc::Mu; Km ^r ; λ <i>pir</i> R6K	
Plasmid		
pMEG-375	8142 bp, Amp ^r , Cm ^r , <i>lacZ</i> , R6K <i>ori</i> , <i>mob incP</i> ,	(Dozois et al., 2003)
	sacR sacB	
$pEi\Delta malE$	10527 bp, Δ <i>malE</i> , pMEG-375	This study
p <i>Ei∆typA</i>	10318 bp, Δ <i>typA</i> , pMEG-375	This study
p <i>Ei∆lamB</i>	10589 bp, Δ <i>lamB</i> , pMEG-375	This study
p <i>Ei∆blc</i>	10255 bp, Δ <i>blc</i> , pMEG-375	This study
p $Ei\Delta ssaV$	10260 bp, ΔssaV, pMEG-375	This study
p <i>Ei∆yscR</i>	10253 bp, Δ <i>yscR</i> , pMEG-375	This study
$pEi\Delta ompW$	10291 bp, Δ <i>ompW</i> , pMEG-375	This study
$pEi\Delta ompN$	10268 bp, Δ <i>ompN</i> , pMEG-375	This study
p <i>Ei∆gpmA</i>	10337 bp, Δ <i>gpmA</i> , pMEG-375	This study
p <i>Ei∆hp2312</i>	10272 bp, Δ <i>hp2312</i> , pMEG-375	This study
p <i>Ei∆hp3311</i>	10283 bp, Δ <i>hp3311</i> , pMEG-375	This study

Genomic DNA and plasmid DNA isolation

E. ictaluri genomic DNA was purified using a Wizard Genomic DNA Purification Kit (Promega). The concentration and integrity of the genomic DNA was measured with NanoDrop 1000 (Thermo Scientific) and agarose gel electrophoresis. The purified genomic DNA was stored at 4 °C. Plasmid purification was done using a Qiaspin

Miniprep Kit (Qiagen). The concentration and quality of extracted plasmid were checked with NanoDrop 1000 and 1% agrose gel electrophoresis.

Preparation of competent cells

To prepare chemical competent cells, a single colony of *E. coli* CC118 λpir was inoculated into 5 ml of LB broth and grown overnight. 4 ml of overnight culture was transferred to 50 ml of fresh LB broth and grown until OD600 reached 0.4 -0.5. The culture was chilled in ice-water for 10 min, after which the bacteria were collected by spinning at 3,000 rpm for 8 min at 4 °C. Pellet was washed twice with ice-cold 0.1 M CaCl₂. In the second wash, bacteria were incubated on ice for 30 min before centrifugation. After removal of the supernatant, the bacterial pellet was resuspended in 5 ml ice-cold 0.1 M CaCl₂ with 15% sterile glycerol. 200 µl bacterial suspension was aliquoted into 1.5 ml microcentrifuge tubes and quick frozen in liquid nitrogen. The aliquoted chemical competent *E. coli* CC118 λpir was stored at -80 °C until use.

Electrocompetent *E. coli* SM10 λpir cells were prepared as stabilized protocol (http://www.its.caltech.edu/~bjorker/Protocols/Prep_of_electocomp_cells.pdf) and then stored at -80 °C until use.

Selection of potential virulence genes in E. ictaluri

The virulence genes knocked out in this study were identified from our microarray and previous proteomic data analysis. 5 genes were selected from bioinformatics analysis; 5 genes were selected from the comparison between microarray and proteomic data (Dumpala, 2010); and1 gene was selected from the common DEGs

which have been identified in four microarray analysis discussed in Chapter II, III, IV and V.

In-frame gene deletion in vitro

Primers were designed with Primer3 V0.4.0 (http://frodo.wi.mit.edu/primer3/). All genes sequences plus 2,000 bp upstream and 2,000 bp downstream flanking regions and *E. ictaluri* whole genome were downloaded from http://www.ncbi.nlm.nih.gov/. The external forward and reverse primers were designed in the region of upstream 1,000 bp away from the very beginning of and down-stream 1,000 bp away from the very ending of the target gene. The internal reverse and forward primers were designed at the very beginning of the start codon and stop codon of the target gene, respectively. Then, the reverse complement of one of the internal primers was added to the 5' end of the other internal primer for overlap extension PCR to produce the spliced DNA fragment with inframe deletion of the target gene. Unique restriction enzyme (RE) sites were added to the 5' end of each external primer for cloning purpose. Moreover, internal forward and reverse primers were designed in-frame to avoid disturbance of downstream genes in *E. ictaluri* chromosome. All primers used in this study are listed in Table 6.2.

Table 6.2External and internal primers used in this study for construction of in-frame
deletion mutants.

Primers	Sequence $(5' \rightarrow 3')^b$	RE ^a
<i>EiT3SSssaV</i> _ext_F	AACCCGGGCtatctgaaatgcctccacca	SmaI
<i>EiT3SSssaV</i> _ext_R	AATCTAGAtatgcccgtcaagcagtgag	XbaI
<i>EiT3SSssaV_</i> int_F	TGAAAACGGTCAATAGCTGGCTGTTCACCACACCCGTACTC	
<i>EiT3SSssaV</i> _int_R	CCAGCTATTGACCGTTTTCA	
<i>EiT3SSp</i> _ext_F	AAGAGCTCtgtcaccgtcgatactcatct	SacI
<i>EiT3SSp_</i> ext_R	AACCCGGGtgataatcagcatcagcagt	SmaI
<i>EiT3SSp</i> _int_F	CTGCTGATCGTAATGGGTACACTGCTGCTTTCGTACCGCTAA	
<i>EiT3SSp</i> _int_R	TGTACCCATTACGATCAGCAG	
<i>EiompW</i> _ext_F	AAGAGCTCagaatgatccccggcaagat	SacI
<i>EiompW</i> _ext_R	AATCTAGAatatccccagttgcccattg	XbaI

Table 6.2 (Continued)

<i>EiompW</i> int F	<u>GATGAAAAAGTGTAGCGTTGCG</u> AGCCAGCACAGCATAAATACC	
<i>EiompW</i> int R	CGCAACGCTACACTTTTTCATC	
<i>EiompN</i> ext F	AAGAGCTCacacggggggtgtgggaga	SacI
<i>EiompN</i> ext R	AATCTAGAgctattttgccatgctggag	XbaI
<i>EiompN</i> int F	GTGAAACGTAATCTGCTGGCAATCGTTGCTCTGGGTCTGGT	
<i>EiompN</i> int R	TGCCAGCAGATTACGTTTCAC	
<i>EiompBLC</i> ext F	AAGAGCTCtcgctcggggtagcctatac	SacI
<i>EiompBLC</i> ext R	AATCTAGActgaagaagaaggcgaggtc	XbaI
<i>EiompBLC</i> int F	CAAGGAGGAGAGAGCCGATGGCAGTAAGGCAGGCGTATATC	
<i>EiompBLC</i> int R	Categgeteteteettg	
Eihp 3311 ext-F	AAGAGCTCactcgacctaacatgcggttc	SacI
Eihp 3311 ext-R	AATCTAGAcgtggtatccgtggcatag	XbaI
Eihp 3311 int-F	TTGGGTATAGGTTGTTGGATTT	
Eihp 3311 int-R	AAATCCAACAACCTATACCCAATCGAAGACCAACAGTTTGAAT	
Eihp 2312 ext-F	AAGAGCTCctctttttggtgccgttattgc	SacI
Eihn 2312 ext-R	AACCCGGGGctatetegegggggggggggg	Smal
<i>Eihp</i> 2312 int-F	ACTGAGAGTGTTGCTGCATGA	Sinai
<i>Eihp</i> 2312 int-R	TCATGCAGCAACACTCTCAGTACCTTGACTGGGAATGAAGTG	
$Eihp_{2212}$ int R $Eihp_{0249}$ ext-F	AAGAGCTCatctgetecaacgeatacat	SacI
$Eihp_0219$ _ext-R	A ACCCCCCCCttaccgggtgatcetgatgg	Smal
$Eihp_0249$ _ext R $Eihp_0249$ _int_F	CATGACTTTACTCTGGGTGTGA	Sinai
$Eihp_0249$ _int P $Eihp_0249$ _int-R		
Einp_0249_IIII-K		SacI
EinrsE_ext_R		Smal
$EinrsE$ _cxt-K	TCTCTCCCGTTTCACCCCGTAA	Smar
EINISE_IIII-I		
Einrse_IIII-K	<u>ACACCTC at a a a a a a a a a a a a a a a a a a</u>	Seel
Eipgem_ext-F		Saci
Elpgcm_ext-R		Smar
Elpgcm_Int-F		
Elpgcm_Int-K		01
EllejG_ext-F	AAGAGUTUccaggagettttaatggcaac	Saci
EitefG_ext-R	AATCTAGAacctttgaagaacggagtatga	Xbal
EitefG_int-F		
<i>EitefG</i> _int-R	ATTIGCCACGIGCITCAATGIAACGCGAAAIGGGIGIIGIA	D (I
<i>EimalE</i> _ext_F	AACTGCAGTGGGTGACGTAAATCATGGTG	PstI
<i>EimalE_</i> int_R	CAGACCGITATACCCCITGIC	
<i>EimalE_</i> int_F	GACAAGGGGTATAACGGTCTGGGTGAAATCATGCCGAACATC	
<i>EimalE</i> _ext_R	AAGAGCTCGGTAAAGATGACGGTCAGCAC	SacI
<i>EilamB</i> _ext_F	AACTGCAGCTCTGGCTGTGGTAAATCGAC	PstI
<i>EilamB</i> _int_R	GGTATCACACTCGTTGCCAAG	
<i>EilamB</i> _int_F	<u>CTTGGCAACGAGTGTGATACC</u> ACCTATGCGAACGGTAAGAAC	
<i>EilamB</i> _ext_R	AAGAGCTCACCAGTCATCAAGCCACATCC	SacI
<i>EitypA</i> _ext_F	AATCTAGAACGGGTAGCAACTTCGTTCTG	XbaI
<i>EitypA</i> _int_R	AATGGCGATGTTACGCAGAT	
<i>EitypA</i> _int_F	ATCTGCGTAACATCGCCATTAAGCGTCATCTGACCGAGAAC	
<i>EitypA</i> _ext_R	AAGAGCTCGGAAAGCGGTAAATAGGGAGA	SacI

^aRE stands for the restriction enzyme added to the 5' end of the primer sequence. ^bBold letters at the 5' end of the primer sequence represent RE site added. AA nucleotides were added to the 5' end of each primer containing a RE site to increase the efficiency of enzyme cut. Underlined bases in one internal primer indicate reverse complemented sequence of another internal primer.

The PCR reaction volume was 25 μ l, and the reaction was set as 100 ng E. ictaluri wt gDNA, 0.5 µl of 10 mM forward and reverse primers, 0.5 µl 10 mM dNTPs, 5 µl 5x buffer, 0.025 U goTaq DNA polymerase, and dd H2O. External forward and internal reverse primers were used to amplify product 1 (P1), while internal forward and external reverse primers were used to amplify product 2 (P2). The PCR cycles to amplify P1 and P2 were as follows: denaturation at 95°C for 2 min, 30 cycles of 95 °C for 30 sec, 56 °C for 30 sec, and 72 °C for 2 min, and extension at 72 °C for 10 min. For overlap extension PCR, the reaction was set similarly except that 2 μ l of equally mixed upstream and downstream PCR products (P1+P2) were used as template and annealing and extension times were 2 min and 3 min, respectively. All PCR products were checked with 1% agarose gel in 0.5 x TBE buffer. The external forward and reverse primers were used to amplify the recombinant fragment. The specific DNA band with the right size was recovered from the gel using Wizard® SV Gel and PCR Clean-Up System (Promega) or QIAquick Gel Extraction Kit (Qiagen) following manufacture's protocol. The recombinant DNA fragment was reamplified to obtain enough DNA.

The recombinant DNA (insert) and pMEG-375 plasmid (vector) were digested with the specific RE added to the external primers of each target gene. The digested insert and plasmid were checked with 1% agarose gel with the non-digested plasmid as control. 1 kb plus ladder from Invitrogen was used as a size marker. The insert and plasmid were gel-purified as above. 1% Agarose gel was used to check RE digestion efficiency with 1 µl of the RE digested product for both the insert and vector. The rest were gel purified as above to obtain the purified product following the protocol provided with the Kit. T4 ligase (Promega) was used to ligate digested in-frame deleted gene and pMEG-375

according to the molar ratio of vector:insert = 1 : 3. The ligation was performed at 4 °C overnight. 2 µl of the ligation was used for transformation with *E. coli* CC118 λpir chemical competent cells and incubated for 1 h in SOC medium at 37 °C, 200 rpm. All pelleted bacteria were spread on LB agar plates containing 100 µg/ml ampicillin and incubated at 37 °C overnight. The following day, ampicillin resistant colonies were picked and cultured in LB broth with ampicillin at 37 °C overnight with aeration. Plasmids were isolated from the overnight culture and checked on agarose gel with empty pMEG-375 as control. The larger size plasmids were cut with REs for insert confirmation, followed by sequencing with BigDye Terminator v1.1 Cycle Sequencing Kit (Invitrogen). Frozen stocks were prepared for all colonies for *E. coli* CC118 λpir including positive plasmids. The procedure for in vitro mutant construction was illustrated in Figure 6.1.

Figure 6.1 The process to construct *E. ictaluri* in-frame deletion mutants *in vitro*.

The arrows stand for primers; the blue and red tails at the end of external primers stand for the RE sites for cloning; the orange tail at the end of internal forward primer stands for the reverse complemented sequence of the internal reverse primer for producing the overlapped product.

The confirmed recombinant pMEG-375 containing the target insert was transferred into *E. coli* SM10 λpir electro-competent cells with BioRad electroporator (BioRad), and isolated plasmid from *E. coli* SM10 λpir was confirmed through gel electrophoresis. Frozen stocks were prepared for all colonies for *E. coli* SM10 λpir strain including positive plasmid and kept at -80 °C. SOC medium was used for incubation after electroporation. The recombinant plasmid was then introduced into *E. ictaluri* wt genome by conjugation to allow the allelic exchange to occur through the homologous region between the cloned recombinant DNA fragment with in-frame deleted gene and *E*.

ictaluri chromosome. Two step screening method was conducted to screen the correct *E. ictaluri* mutant. In the first step, *E. ictaluri* colonies were selected using ampicillin because the entire plasmid incorporated into the *E. ictaluri* chromosome through a single crossover. In the second step, double cross-over mutants were selected on LB with 5% sucrose, 0.35% D-mannitol, and 12.5 μ g/ml colistin because the suicide plasmid contains the sacB gene, which kills bacteria with integrated plasmid. At each step, colony PCR was used to check the genotype of colonies using external forward and reverse primers. For the mutants with right band observed from the colony PCR product, ampicillin sensitivity test was constructed to ensure the loss of plasmid. Final verification of the *E. ictaluri* mutants was done by sequencing using a gene specific primer designed next to the deleted region (Table 6.3).

www.manaraa.com

Primer Name	Sequence
EiyscR_FS01	GGAGAACCCATCATGTCTCTG
EiyscR_S01	CAACACCACCGGTAAAGAGAG
Eiblc_FS01	GGAACGGGTGTAAAGGTAAGG
Eiblc_RS01	GCAGCAACGCTATCCTATCC
EiompN_FS01	AGTTCTCACTCGCAGCACCA
EiompN_RS01	TCACAATCCTCTATGCCTGTC
Eihp2312_FS01	CTCTCCTGCGATGTACCTTGA
<i>Eihp2312</i> _RS01	GAGATGCCCCACCATTTGAG
EigpmA_FS01	GGGTTATTGCATTCCACACACT
EigpmA_RS01	GAGTTAAGAAGGCGGGCTAGGT
Eihp3311_FS01	ACCTGCAAATCCACCACAAC
<i>Eihp3311</i> _RS01	AGTTCACCGCCAGACCATAA
EiompW_FS01	GATGTGATCTCGAATGAATCAA
EiompW_RS01	CTCGGTCGAAAACGATATGC
EissaV_FS01	CGATGCACTGTGGATTTCAG
EissaV_RS01	GCATGGGTGTCTCCTATCAGT
EilamB_Fs01	GTCGACTTTCACGGCTATGC
EiLamB_RS01	CTCAGCCCCTTACCACCAAG
EimalE_FS01	CGACAGGACTACAAGGACTGC
EimalE_RS01	GTGCCTGAGTCACGCTCTGA
EitypA_FS01	AGTCCCTCGCTTAATACGTG
EitypA_RS01	GTGGTATCACACCGACACGA

Table 6.3Primers used for sequencing to confirm the deletion region in *E. ictaluri*
mutants.

Virulence and efficacy of E. ictaluri mutants in catfish fingerlings

Specific pathogen free catfish were obtained from the MSU-CVM Specific Pathogen Free Catfish Hatchery. Virulence and efficacy trial were conducted as reported by our group (Karsi et al., 2009; Karsi and Lawrence, 2007; Karsi et al., 2006) by following institutional guidelines of Animal Care and Use Committee. 748 8-week old SPF channel catfish fingerlings (6.85 ± 0.45 cm, 2.86 ± 0.71 g) were stocked into 44 40liter tanks at a rate of 17 fish/tank. Each treatment group (11 E. ictaluri in-frame deletion mutants) was randomly assigned to three tanks respectively, while positive (*E. ictaluri*

wt) and negative (BHI) control groups were randomly assigned to four tanks. After one week of acclimation, fish were challenged by immersion with 2.5×10^7 CFU/ml water for 1 h. Mortalities were recorded daily for 21 days, and the total percent mortalities were calculated for each treatment group.

To determine the efficacy of the *E. ictaluri* in-frame deletion mutants, the vaccinated and non-vaccinated groups were re-challenged with *E. ictaluri* wt (4.79 x 107 CFU/ml water) after 21 days post vaccination as described above. Fish mortalities were recorded daily for 14 days, and relative percent survival was determined for each group. Relative percent survival (RPS) was calculated according to the formula RPS = [1-(% mortality of vaccinated fish/% mortality of non-vaccinated fish)] x 100 (Amend, 1981) which expresses the proportion of fish saved due to vaccination.

Results

Selection of the E. ictaluri target genes for mutant construction

The 11 selected virulence genes were all identified from microarray experiment as described in material and method. The eleven genes include 3 genes encoding outer membrane proteins, 2 genes encoding T3SS proteins, 2 genes encoding hypothetical proteins, and *malE*, *lamB*, *typA*, and *gpmA* (Table 6.4).

Gene symble	GI	Protein product	Experiment	Deletion (%)
malE	238918180	Maltose ABC transporter periplasmic protein	Chapter II, IV	76.88
typA	238921701	GTP-binding protein typa/bipa	Chapter V	95.22
lamB	238918184	Maltoporin	Chapter II, IV	74.82
blc	238918845	Outer membrane lipoprotein blc	Chapter II, IV	79.14
ssaV	238918892	Type III secretion system apparatus protein ssav	Chapter II	93.88
vscR	238918894	Type III secretion system protein yscr	Chapter II, IV, III	83.80
ompW	238919586	Outer membrane protein W	Chapter IV	85.51
ompN	238919771	Outer membrane protein N	Chapter II, V	95.19
hp_2312	238920203	Hypothetical protein	Chapter II, IV	92.73
gpmA	238920733	Phosphoglyceromutase	Chapter II, IV	84.86
hp_3311	238921170	Hypothetical protein	Chapter II, IV, V	65.88

Table 6.4Eleven virulence genes being knocked out in this study.

Construction of the E. ictaluri in-frame deletion mutants

P1 and P2 of each gene have been amplified (Figure 6. 2) and in-frame deleted overlap extension products have been obtained (Figure 6. 3). All in-frame deletion recombinants for each target gene were successfully cloned into pMEG-375 suicide plasmid (Figure 6. 4).

Figure 6.2 Agarose gel image of single PCR product 1, product 2 of 11 *E. ictaluri* genes.

1:*hp2312*-P2; 2:*hp2312*-P1; 3:*gpmA*-P1; 4:*gpmA*-P2; 5:*hp3311*-P2; 6:*hp3311*-P1; 7:*lamB*-P2; 8:*lamB*-P1; 9:*malE*-P2; 10:*malE*-P1; 11:*typA*-P2; 12:*typA*-P1; 13:*blc*-P1; 14:*blc*-P2; 15:*yscR*-P1; 16:*yscR*-P2; 17:*ompN*-P1; 18:*ompN*-P2; 19:*ssaV*-P1; 20:*ssaV*-P2; 21:*ompW*- P1; 22:*ompW*-P2

Figure 6.3 Agarose gel image of overlapped recombinant PCR product of 11 *E*. *ictaluri* genes.

1: ΔmalE; 2: malE; 3: ΔlamB; 4: lamB; 5: ΔtypA; 6: typA; 7: Δhp2312; 8: hp2312; 9: Δhp3311; 10: hp3311; 11: ΔgpmA; 12: gpmA; 13: ΔssaV; 14: ssaV; 15: ΔompW; 16: ompW; 17: ΔyscR; 18: yscR; 19: Δblc; 20: blc; 21: ΔompN; 22: ompN

Figure 6.4 Confirmation of successfully cloning by RE digestion

1:linear pMEG-375; 2:p $Ei\Delta malE$; 3:p $Ei\Delta typA$; 4:p $Ei\Delta hp2312$; 5:p $Ei\Delta gpmA$; 6:p $Ei\Delta hp3311$; 7:p $Ei\Delta blc$; 8:p $Ei\Delta ompW$; 9:p $Ei\Delta ompN$; 10:p $Ei\Delta ssaV$; 11:p $Ei\Delta yscR$; 12:p $Ei\Delta lamB$

E. ictaluri in-frame deletion mutants have been obtained for each gene listed in Table 6.1 above. The results of first and secondary selection of *E. ictaluri* mutant were confirmed with colony PCR (Figure 6.5; Figure 6.6).

Figure 6.5 Colony PCR results after single crossover

1: $Ei\Delta malE$; 2: $Ei\Delta typA$; 3: $Ei\Delta hp2312$; 4: $Ei\Delta gpmA$; 5: $Ei\Delta hp3311$; 6: $Ei\Delta blc$; 7: $Ei\Delta ompW$; 8: $Ei\Delta ompN$; 9: $Ei\Delta ssaV$; 10: $Ei\Delta yscR$; 11: $Ei\Delta lamB$

Figure 6.6 Colony PCR results after 2nd crossover under sucrose selection

1: $Ei\Delta malE$; 2:EimalE; 3: $Ei\Delta typA$; 4: EitypA; 5: $Ei\Delta hp2312$; 6: Eihp2312; 7: $Ei\Delta gpmA$; 8: EigpmA; 9: $Ei\Delta hp3311$; 10: Eihp3311; 11: $Ei\Delta blc$; 12: Eiblc; 13: $Ei\Delta ompW$; 14: EiompW; 15: $Ei\Delta ompN$; 16: EiompN; 17: $Ei\Delta ssaV$; 18: EissaV; 19: $Ei\Delta yscR$; 20: EiyscR; 21: $Ei\Delta lamB$; 22: EilamB

Virulence and efficacy of *E. ictaluri* in-frame deletion mutants

The results revealed that $Ei\Delta ssaV$ and $Ei\Delta yscR$ have been attenuated completely

(Figure 6.7). After 21 days post challenge, catfish mortality was 0% in the fish

challenged with $Ei\Delta ssaV$ and $Ei\Delta yscR$, respectively, while *E. ictaluri* wt caused 58.9%

mortality. For the other 9 *E. ictaluri* in-frame deletion mutants, their virulence was either less attenuated, not attenuated, or improved compared to the mortality of the wt strain.

Figure 6.7 Percent mortalities of channel catfish fingerlings challenged with the 11 *E*. *ictaluri* in-frame deletion mutants and wt.

The evaluation of the mutants' efficacy using the channel catfish fingerlings from the virulence trial showed that mortality in the groups vaccinated with *E. ictaluri* mutants were lower than that of sham vaccinated group. The relative percent survival (RPS) rate of the groups vaccinated with *E. ictaluri* mutants was much higher than the RPS of sham vaccinated group (0%) (Figure 6.8).

Figure 6.8 Percent survival of the channel catfish fingerlings vaccinated with the 11 *E. ictaluri* mutants post challenge with the *E. ictaluri* WT strain.

The low mortality and relative high RPS of $Ei\Delta ssaV$ and $Ei\Delta yscR$ indicated that the absence of these two genes reduced virulence of *E. ictaluri* and provided moderate protection in channel catfish fingerlings.

Discussion

The aim of this research was to construct and characterize 11 DEGs of *E. ictaluri*. The result of virulence and efficacy of *E. ictaluri* in-frame deletion mutants in fish trial showed that type III secretion system (T3SS) is important in the pathogenesis of *E. ictaluri*. In present study, two mutants from T3SS, $Ei\Delta ssaV$, and $Ei\Delta yscR$, gave 0% mortality in virulence trial with catfish fingerlings. YscR is a protein located on the bacterial inner membrane. In-frame deletion mutant of *yscR* in *Yersinia pestis* caused defective secretion of certain virulence related proteins (Fields et al., 1994). SsaV is

thought to be integral to the inner bacterial cell membrane and is part of the needle-like organelle that excretes pathogenic proteins across inner-membrane. The mutation of *ssaV* in *Salmonella* caused loss function of secreting SPI-2 (*Salmonella* pathogenicity island 2) T3SS effectors (Hansen-Wester et al., 2002; Nikolaus et al., 2001). Our result showed that *yscR* and *ssaV* were also important virulence genes in *E. ictaluri*'s pathogenesis because of the completely attenuated mortality of *Ei* Δ *yscR* and *Ei* Δ *ssaV* in the fingerling trial. The RPS of *Ei* Δ *yscR* and *Ei* Δ *ssaV* from the efficacy test were about 50% higher than that of sham-vaccinated group, but *Ei* Δ *yscR* and *Ei* Δ *ssaV* may not be effective live vaccine candidates. However, multiple genes in the *ssaV* and *yscR* mutants may be modified to optimize efficacy.

Outer membrane proteins give Gram-negative bacteria protection against tough environments and play important roles on translocation of solutes and proteins, as well as signal transduction across the membrane (Koebnik et al., 2000). Outer membrane protein W (ompW) was reported to provide significant protection in large yellow croakers when the fish being injected with purified ompW were challenged with *V. alginolyticus* ZJ04107 (Qian et al., 2007). It was also reported that a *V. cholera* 0139 strain SG25 *ompW* mutant by insertion caused 10-fold reduction in colonization ability (Nandi et al., 2005). The *Ei* Δ *ompW* mutant showed improved virulence in the fish virulence trial. This mutant caused high mortality (86.27%) in fish trial compared to 58.09% mortality of *E. ictaluri* wt. The deletion of *ompW* gene from *E. ictaluri* genome does not reduce this pathogen's virulence. Further studies are needed to resolve the function of *ompW* in bacterial virulence.

Blc is an outer membrane-bound lipoprotein, which binds fatty acids and phospholipids (Campanacci et al., 2006). When bacteria are at stationary growth phase and under high osmolarity, Blc was expressed to maintain the cell envelope integrity (Bishop et al., 1995). The deletion of *blc* from *E. ictaluri*'s genome did not cause any virulence attenuation perhaps because other genes may have compensated for the function of *blc*. Outer membrane protein N (ompN) was reported to be involved in adhesion and invasion that confers on pathogens' virulence. The *E. ictaluri* genome has three units of *ompN* (Neema et al., 2011). The deletion of one copy of this protein in *Ei* Δ ompN mutant caused 63.76% mortality similar to wt. The most possible reason may be the other two copies can still function normally.

In conclusion, our results indicate that the deletion of T3SS *ssaV* and T3SS *yscR* caused significant attenuation in *E. ictaluri* virulence. In the efficacy test, $Ei\Delta ompW$ provided good protection for catfish fingerlings when re-challenged with *E. ictaluri* wild type. The construction of double mutants of *ssaV* and *ompW* or *yscR* and *ompW* may prove to be effective vaccine candidates.

CHAPTER VII

CONCLUSIONS

This study aimed to identify new *E. ictaluri* virulence factors involved in recognition, attachment, and penetration of host mucosal membranes as well as in serum resistance. In *E. ictaluri* wild type host encounter experiment, 377 DEGs have been identified including 145 up-regulated genes and 232 down-regulated genes. In *E. ictaluri* wt exposed to SPF catfish serum, 16 DEGs have been identified including 3 up-regulated genes and 13 down-regulated genes. In *Ei*AKMut02 encountered with host and SPF catfish serum, 82 (13 up- and 69 down-regulated) and 296 DEGs (108 up- and 188 downregulated) have been identified. In total, we have identified 38 potential *E. ictaluri* virulence factors. Second, 11 in-frame deletion mutants have been constructed and evaluated in catfish fingerlings. Among 11 *E. ictaluri* mutants, *Ei*Δ*ssaV*, *Ei*Δ*yscR* were completely attenuated, though they provided moderate protection against *E. ictaluri* wt.

REFERENCES

- Ainsworth A.J., Dexiang C.. 1990. Differences in the phagocytosis of four bacteria by channel catfish neutrophils. Developmental & Comparative Immunology 14:201-209
- Amend, D. F. (1981). Potency testing of fish vaccines. Developments in Biological Standardization 49, 447-454.
- Angerer, A., Gaisser, S., and Braun, V. (1990). Nucleotide sequences of the sfuA, sfuB, and sfuC genes of Serratia marcescens suggest a periplasmic-binding-proteindependent iron transport mechanism. J Bacteriol 172, 572-578.
- ARDL (2011). 2011 annual case summary report. Aquatic Research & Diagnostic Laboratory, Thad Cochran National Warmwater Aquaculture Center. http://tcnwac.msstate.edu/cvm2011.pdf.
- Arkowitz, R. A., and Wickner, W. (1994). SecD and SecF are required for the proton electrochemical gradient stimulation of preprotein translocation. Embo J 13, 954-63.
- Baldwin, T. J., and Newton, J. C. (1993). Pathogenesis of Enteric Septicemia of Channel Catfish, Caused by *Edwardsiella ictaluri*: Bacteriologic and Light and Electron Microscopic Findings. J Aquat Anim Health 5, 189-198.
- Berger, C., Robin, G. P., Bonas, U., and Koebnik, R. (2010). Membrane topology of conserved components of the type III secretion system from the plant pathogen Xanthomonas campestris pv. vesicatoria. Microbiology 156, 1963-1974.
- Bertolini, J. M., Cipriano, R. C., Pyle, S. W., and McLaughlin, J. J. (1990). Serological investigation of the fish pathogen *Edwardsiella ictaluri*, cause of enteric septicemia of catfish. J Wildl Dis 26, 246-52.
- Bishop, R. E., Penfold, S. S., Frost, L. S., Holtje, J. V., and Weiner, J. H. (1995). Stationary phase expression of a novel Escherichia coli outer membrane lipoprotein and its relationship with mammalian apolipoprotein D. Implications for the origin of lipocalins. J Biol Chem 270, 23097-103.
- Bolstad, B. M., Irizarry, R. A., Åstrand, M., and Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185-193.

- Campanacci, V., Bishop, R. E., Blangy, S., Tegoni, M., and Cambillau, C. (2006). The membrane bound bacterial lipocalin Blc is a functional dimer with binding preference for lysophospholipids. FEBS Lett 580, 4877-83.
- Campos, E., Baldoma, L., Aguilar, J., and Badia, J. (2004). Regulation of Expression of the Divergent ulaG and ulaABCDEF Operons Involved in I-Ascorbate Dissimilation in Escherichia coli. J Bacteriol 186, 1720-1728.
- Claret, L., Calder, S. R., Higgins, M., and Hughes, C. (2003). Oligomerization and activation of the FliI ATPase central to bacterial flagellum assembly. Mol Microbiol 48, 1349-55.
- Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., and Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674-3676.
- Cooper, R. K., Shotts Jr, E. B., and Nolan, L. K. (1996). Use of a mini-transposon to study chondroitinase activity associated with *Edwardsiella ictaluri*. Journal of Aquatic Animal Health 8, 319-324.
- Cornelis, G. R., and Wolf-Watz, H. (1997). The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol Microbiol 23, 861-867.
- Das, S., and Chaudhuri, K. (2003). Identification of a Unique IAHP (IcmF Associated Homologous Proteins) Cluster in Vibrio cholerae and other Proteobacteria through In Silico Analysis. In Silico Biology 3, 287-300.
- Davies, R. L. (1991). Virulence and serum-resistance in different clonal groups and serotypes of Yersinia ruckeri. Vet Microbiol 29, 289-97.
- Dawson, R. J. P., and Locher, K. P. (2006). Structure of a bacterial multidrug ABC transporter. Nature 443, 180-185.
- Dean, S., Hanson, T., and Murray, S. (2003). Economic Impact of the Mississippi Farm-Raised
- Desvaux, M., Hebraud, M., Henderson, I. R., and Pallen, M. J. (2006). Type III secretion: what's in a name? Trends Microbiol 14, 157-60.
- Diepold, A., Wiesand, U., and Cornelis, G. R. (2011). The assembly of the export apparatus (YscR,S,T,U,V) of the Yersinia type III secretion apparatus occurs independently of other structural components and involves the formation of an YscV oligomer. Mol Microbiol 82, 502-514.
- Dozois, C. M., Daigle, F., and Curtiss, R., 3rd (2003). Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acad Sci U S A 100, 247-52.

- Dumpala, P. R. (2010). Understanding molecular aspects of catfish-pathogen interactions (PhD dissertation).
- Economou, A., Pogliano, J. A., Beckwith, J., Oliver, D. B., and Wickner, W. (1995). SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 83, 1171-81.
- Evelyn, T. P. T. (1996). Infection and disease. The Fish Immune system: organism, pathogen, and environment, p339-366.
- Fan, F., and Macnab, R. M. (1996). Enzymatic characterization of FliI. An ATPase involved in flagellar assembly in Salmonella typhimurium. J Biol Chem 271, 31981-8.
- Fields, K. A., Plano, G. V., and Straley, S. C. (1994). A low-Ca2+ response (LCR) secretion (ysc) locus lies within the lcrB region of the LCR plasmid in Yersinia pestis. J Bacteriol 176, 569-579.
- Filloux, A., Hachani, A., and Bleves, S. (2008). The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 154, 1570-1583.
- Francis-Floyd, R., Beleau, M. H., Waterstrat, P. R., and Bowser, P. R. (1987). Effect of water temperature on the clinical outcome of infection with *Edwardsiella ictaluri* in channel catfish. Journal of the American Veterinary Medical Association 191, 1413-1416.
- Galán, J. E., and Collmer, A. (1999). Type III Secretion Machines: Bacterial Devices for Protein Delivery into Host Cells. Science 284, 1322-1328.
- Gay, P., Le Coq, D., Steinmetz, M., Ferrari, E., and Hoch, J. A. (1983). Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. J Bacteriol 153, 1424-31.
- Goodin, J. L., Raab, R. W., McKown, R. L., Coffman, G. L., Powell, B. S., Enama, J. T., Ligon, J. A., and Andrews, G. P. (2005). Yersinia pestis outer membrane type III secretion protein YscC: expression, purification, characterization, and induction of specific antiserum. Protein Expr Purif 40, 152-163.
- Götz, S., García-Gómez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., Robles, M., Talón, M., Dopazo, J., and Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36, 3420-3435.
- Hansen-Wester, I., Stecher, B., Hensel, M. (2002). Type III Secretion of Salmonella enterica Serovar Typhimurium Translocated Effectors and SseFG. Infect Immun. 70(3), 1403–1409

Hanson, T., and Sites, D. (2012). 2011 U.S. catfish database.

- Hawke, J. P. (1979). A bacterium associated with pond cultured channel catfish, Ictalurus punctatus. Journal of the Fisheries Research Board of Canada 36, 5.
- Hawke, J. P., McWhorter, A. C., Steigerwalt, A. G., and Brenner, D. J. (1981). *Edwardsiella ictaluri* sp. nov., the Causative Agent of Enteric Septicemia of Catfish. International Journal of Systematic Bacteriology 31, 396-400.
- Henderson, I. R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C., and Ala'Aldeen, D. (2004). Type V Protein Secretion Pathway: the Autotransporter Story. Microbiology and Molecular Biology Reviews 68, 692-744.
- Herrero, M., de Lorenzo, V., and Timmis, K. N. (1990). Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J Bacteriol 172, 6557-67.
- Holland, M. C., and Lambris, J. D. (2002). The complement system in teleosts. Fish Shellfish Immunol 12, 399-420.
- Hollenstein, K., Frei, D. C., and Locher, K. P. (2007). Structure of an ABC transporter in complex with its binding protein. Nature 446, 213-6.
- Hueck, C. J. (1998). Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants. Microbiology and Molecular Biology Reviews 62, 379-433.
- Hvorup, R. N., Goetz, B. A., Niederer, M., Hollenstein, K., Perozo, E., and Locher, K. P. (2007). Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 317, 1387-90.
- Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U., and Speed, T. P. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249-64.
- Jackson, M. W., and Plano, G. V. (2000). Interactions between type III secretion apparatus components from Yersinia pestis detected using the yeast two-hybrid system. FEMS Microbiol Lett 186, 85-90.
- Kaattari, L. S., and Piganelli, D. J. (1996). The specific immune system: humoral defense. The Fish Immune system: organism, pathogen, and environment, p207-243.
- Karsi, A., Gulsoy, N., Corb, E., Dumpala, P. R., and Lawrence, M. L. (2009). Highthroughput bioluminescence-based mutant screening strategy for identification of bacterial virulence genes. Appl Environ Microbiol 75, 2166-75.

- Karsi, A., and Lawrence, M. L. (2007). Broad host range fluorescence and bioluminescence expression vectors for Gram-negative bacteria. Plasmid 57, 286-95.
- Karsi, A., Menanteau-Ledouble, S., and Lawrence, M. L. (2006). Development of bioluminescent *Edwardsiella ictaluri* for noninvasive disease monitoring. FEMS Microbiol Lett 260, 216-23.
- Klesius, P. (1992). Immune system of channel catfish: An overture on immunity to *Edwardsiella ictaluri*. Annual Review of Fish Diseases 2, 325-338.
- Klesius, P. H., and Shoemaker, C. A. (1999). Development and use of modified live *Edwardsiella ictaluri* vaccine against enteric septicemia of catfish. Adv Vet Med 41, 523-37.
- Koebnik, R., Locher, K. P., and Van Gelder, P. (2000). Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37, 239-53.
- Kumar, R., and Nanduri, B. (2010). HPIDB a unified resource for host-pathogen interactions. BMC Bioinformatics 11, S16.
- Lawrence, M. L., Banes, M. M., Azadi, P., and Reeks, B. Y. (2003). The *Edwardsiella ictaluri* O polysaccharide biosynthesis gene cluster and the role of O polysaccharide in resistance to normal catfish serum and catfish neutrophils. Microbiology 149, 1409-1421.
- Lawrence, M. L., Banes, M. M., and Williams, M. L. (2001). Phenotype and virulence of a transposon-derived lipopolysaccharide O side-chain mutant strain of *Edwardsiella ictaluri*. Journal of Aquatic Animal Health 13, 291-299.
- Lawrence, M. L., Cooper, R. K., and Thune, R. L. (1997). Attenuation, persistence, and vaccine potential of an *Edwardsiella ictaluri* purA mutant. Infection and Immunity 65, 4642-4651.
- Liu, R., and Ochman, H. (2007). Stepwise formation of the bacterial flagellar system. Proceedings of the National Academy of Sciences 104, 7116-7121.
- Locher, K. P. (2009). Review. Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc Lond B Biol Sci 364, 239-45.
- Locher, K. P., Lee, A. T., and Rees, D. C. (2002). The E. coli BtuCD Structure: A Framework for ABC Transporter Architecture and Mechanism. Science 296, 1091-1098.
- M.O., S., and J.A., P. (1986). Immune response of channel catfish to lipopolysaccharide and whole cell *Edwardsiella ictaluri* vaccines. Dis Aquat Organ 2, 5.

- MacMillan, J. R. (1985). Infectious Diseases. In "Channel Catfish Culture" (C. S. Tucker, ed.), Vol. 15, pp. 405-496. Elsevier Science Publishers, New York.
- Magarinos, B., Romalde, J. L., Lemos, M. L., Barja, J. L., and Toranzo, A. E. (1994). Iron uptake by Pasteurella piscicida and its role in pathogenicity for fish. Appl Environ Microbiol 60, 2990-8.
- Manning, J. M., and Nakanishi, T. (1996). The specific immune system: cellular defenses. The Fish Immune system: organism, pathogen, and environment, p159-205.
- Matsuyama, S.-i., Fujita, Y., Sagara, K., and Mizushima, S. (1992). Overproduction, purification and characterization of SecD and SecF, integral membrane components of the protein translocation machinery of Escherichia coli. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1122, 77-84.
- Meedel, T. H., and Pizer, L. I. (1974). Regulation of One-Carbon Biosynthesis and Utilization in Escherichia coli. J Bacteriol 118, 905-910.
- Menanteau-Ledouble, S., Karsi, A., and Lawrence, M. L. (2011). Importance of skin abrasion as a primary site of adhesion for *Edwardsiella ictaluri* and impact on invasion and systematic infection in channel catfish Ictalurus punctatus. Vet Microbiol 148, 425-30.
- Merino, S., Nogueras, M. M., Aguilar, A., Rubires, X., Alberti, S., Benedi, V. J., and Tomas, J. M. (1998). Activation of the complement classical pathway (C1q binding) by mesophilic Aeromonas hydrophila outer membrane protein. Infect Immun 66, 3825-31.
- Michiels, T., Wattiau, P., Brasseur, R., Ruysschaert, J. M., and Cornelis, G. (1990). Secretion of Yop proteins by Yersiniae. Infect Immun 58, 2840-9.
- Miller, V. L., and Mekalanos, J. J. (1988). A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170, 2575-83.
- Minamino, T., Kazetani, K., Tahara, A., Suzuki, H., Furukawa, Y., Kihara, M., and Namba, K. (2006). Oligomerization of the bacterial flagellar ATPase FliI is controlled by its extreme N-terminal region. J Mol Biol 360, 510-9.
- Miyazaki, T., and Plumb, J. A. (1985). Histopathology of *Edwardsiella ictaluri* in channel catfish, Ictalurus punctatus (Rafinesque)*. J Fish Dis 8, 389-392.
- Morrison, E. E., and Plumb, J. A. (1994). Olfactory Organ of Channel Catfish as a Site of Experimental *Edwardsiella ictaluri* Infection. J Aquat Anim Health 6, 101-109.

- Mougous, J. D., Cuff, M. E., Raunser, S., Shen, A., Zhou, M., Gifford, C. A., Goodman, A. L., Joachimiak, G., Ordoñez, C. L., Lory, S., Walz, T., Joachimiak, A., and Mekalanos, J. J. (2006). A Virulence Locus of Pseudomonas aeruginosa Encodes a Protein Secretion Apparatus. Science 312, 1526-1530.
- Munn, C. B., Ishiguro, E. E., Kay, W. W., and Trust, T. J. (1982). Role of surface components in serum resistance of virulent Aeromonas salmonicida. Infect Immun 36, 1069-1075.
- Nandi, B., Nandy, R. K., Sarkar, A., and Ghose, A. C. (2005). Structural features, properties and regulation of the outer-membrane protein W (OmpW) of Vibrio cholerae. Microbiology 151, 2975-86.
- Neema, M., Karunasagar, I., and Karunasagar, I. (2011). Structural and functional characterization of outer membrane protein N in *Edwardsiella ictaluri*: A bioinformatic approach. International Journal of Pharma Sciences and Research 2, 14.
- Newton, J. C., Wolfe, L. G., Grizzle, J. M., and Plumb, J. A. (1989). Pathology of experimental enteric septicaemia in channel catfish, Ictalurus punctatus (Rafinesque), following immersion-exposure to *Edwardsiella ictaluri*. J. Fish Dis. 12, 335-347.
- Nikolaus, T., Deiwick, J., Rappl, C., Freeman, J. A., Schröder, W., Miller, S. I., and Hensel, M. (2001). SseBCD Proteins Are Secreted by the Type III Secretion System of Salmonella Pathogenicity Island 2 and Function as a Translocon. J Bacteriol 183, 6036-6045.
- Nishiyama, K., Hanada, M., and Tokuda, H. (1994). Disruption of the gene encoding p12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature. Embo J 13, 3272-7.
- Nishiyama, K., Suzuki, T., and Tokuda, H. (1996). Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 85, 71-81.
- Nusbaum, K. E., and Morrison, E. E. (1996). Communications: Entry of 35S-Labeled *Edwardsiella ictaluri* into Channel Catfish. J Aquat Anim Health 8, 146-149.
- Ourth, D. D., and Bachinski, L. M. (1987). Bacterial sialic acid modulates activation of the alternative complement pathway of channel catfish (Ictaluruspunctatus). Developmental & amp; Comparative Immunology 11, 551-564.
- Petersen, S. V., Thiel, S., Jensen, L., Vorup-Jensen, T., Koch, C., and Jensenius, J. C. (2000). Control of the classical and the MBL pathway of complement activation. Mol Immunol 37, 803-11.

- Petrie-Hanson, L., and Ainsworth, A. J. (2000). Differential cytochemical staining characteristics of channel catfish leukocytes identify cell populations in lymphoid organs. Vet Immunol Immunopathol 73, 129-44.
- Pinkett, H. W., Lee, A. T., Lum, P., Locher, K. P., and Rees, D. C. (2007). An Inward-Facing Conformation of a Putative Metal-Chelate-Type ABC Transporter. Science 315, 373-377.
- Plamann, M. D., Rapp, W. D., and Stauffer, G. V. (1983). Escherichia coli K12 mutants defective in the glycine cleavage enzyme system. Mol Gen Genet 192, 15-20.
- Plano, G. V., and Straley, S. C. (1995). Mutations in yscC, yscD, and yscG prevent highlevel expression and secretion of V antigen and Yops in Yersinia pestis. J Bacteriol 177, 3843-54.
- Plumb, J. A., and Vinitnantharat, S. (1989). Biochemical, Biophysical, and Serological Homogeneity of *Edwardsiella ictaluri*. J Aquat Anim Health 1, 51-56.
- Pogliano, J. A., and Beckwith, J. (1994). SecD and SecF facilitate protein export in Escherichia coli. Embo J 13, 554-61.
- Pukatzki, S., Ma, A. T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W. C., Heidelberg, J. F., and Mekalanos, J. J. (2006). Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103, 1528-1533.
- Qian, R., Chu, W., Mao, Z., Zhang, C., Wei, Y., and Yu, L. (2007). Expression, characterization and immunogenicity of a major outer membrane protein from Vibrio alginolyticus. Acta Biochim Biophys Sin 39, 194-200.
- Sakai, K. D., and Kimura, T. (1985). Relationship between agglutinative properties of Aeromonas salmonicida strains isolated from fish in Japan and their resistance to mechanisms of host defense. Fish Pathology 20, 9-21.
- Schmidt, B. Z., and Colten, H. R. (2000). Complement: a critical test of its biological importance. *Immunol Rev* **178**, 166-76.
- Schoenhals, G. J., and Macnab, R. M. (1996). Physiological and biochemical analyses of FlgH, a lipoprotein forming the outer membrane L ring of the flagellar basal body of Salmonella typhimurium. J Bacteriol 178, 4200-7.
- Schoenhals, G. J., and Macnab, R. M. (1999). FliL is a membrane-associated component of the flagellar basal body of Salmonella. Microbiology 145, 1769-1775.
- Secombes, C. J. (1996). The nonspecific immune system: cellular defenses. The Fish Immune system: organism, pathogen, and environment, p63-103.

- Self, W. T., Grunden, A. M., Hasona, A., and Shanmugam, K. T. (2001). Molybdate transport. Research in Microbiology 152, 311-321.
- Sexton, J. A., Miller, J. L., Yoneda, A., Kehl-Fie, T. E., and Vogel, J. P. (2004). Legionella pneumophila DotU and IcmF Are Required for Stability of the Dot/Icm Complex. Infect Immun 72, 5983-5992.
- Shoemaker, C. A., Klesius, P. H., and Bricker, J. M. (1999). Efficacy of a modified live *Edwardsiella ictaluri* vaccine in channel catfish as young as seven days post hatch. Aquaculture 176, 189-193.
- Shoemaker, C. A., Klesius, P. H., and Evans, J. J. (2002). In ovo methods for utilizing the modified live *Edwardsiella ictaluri* vaccine against enteric septicemia in channel catfish. Aquaculture 203, 221-227.
- Shotts, E. B., Blazer, V. S., and Waltman, W. D. (1986). Pathogenesis of Experimental *Edwardsiella ictaluri* Infections in Channel Catfish (Icta lurus punctatus). Canadian Journal of Fisheries and Aquatic Sciences 43, 36-42.
- Skirpstunas, R. T., and Baldwin, T. J. (2003). Antibodies against Affinity-Purified, Surface-Exposed Outer Membrane Proteins of *Edwardsiella ictaluri* Block Invasion into Fathead Minnow Epithelial Cells. J Aquat Anim Health 15, 92-97.
- Smyth, G. K. (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3, 12.
- Smyth, G. K. (2005). Limma: linear models for microarray data. In: Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer, New York. 24.
- Smyth, G. K., Michaud, J., and Scott, H. S. (2005). Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21, 2067-75.
- Stanley, L. A., Hudson, J. S., Schwedler, T. E., and Hayasaka, S. S. (1994). Extracellular products associated with virulent and avirulent strains of *Edwardsiella ictaluri* from channel catfish. Journal of Aquatic Animal Health 6, 36-43.
- Stauffer, L. T., Fogarty, S. J., and Stauffer, G. V. (1994). Characterization of the Escherichia coli gcv operon. Gene 142, 17-22.
- Thune, R. L., Fernandez, D. H., Benoit, J. L., Kelly-Smith, M., Rogge, M. L., Booth, N. J., Landry, C. A., and Bologna, R. A. (2007). Signature-tagged mutagenesis of *Edwardsiella ictaluri* identifies virulence-related genes, including a salmonella pathogenicity island 2 class of type III secretion systems. Appl Environ Microbiol 73, 7934-46.

- Thune, R. L., Stanley, L. A., and Cooper, R. K. (1993). Pathogenesis of gram-negative bacterial infections in warmwater fish. Annual Review of Fish Diseases, 37-68.
- Trust, T. J., Courtice, I. D., Khouri, A. G., Crosa, J. H., and Schiewe, M. H. (1981). Serum resistance and hemagglutination ability of marine vibrios pathogenic for fish. Infect Immun 34, 702-7.
- Tucker, C., Avery, J., Engle, C., and Goodwin, A. (2004). Industry Profile: Pond-Raised Channel Catfish. Mississippi State University.
- USDA (2003). Part II: Reference of foodsize catfish health and production practices in the United States, 2003 USDA: APHIS:VS, CEAH, National Animal Health Monitoring System, Fort Collins, CO. .
- USDA (2010). National Agriculture Statistics Service, Agricultural Statistics Board, United States Department of Agriculture. Catfish Production Report. http://usda.mannlib.cornell.edu/usda/nass/CatfProd//2010s/2010/CatfProd-07-23-2010.pdf.
- Vinitnantharat S., Plumb J.A., Brown A.E. 1993. Isolation and purification of an outer membrane protein of *Edwardsiella ictaluri* and its antigenicity to channel catfish (*Ictalurus punctatus*). Fish& Shellfish Immunology. 3(6): 401-409
- Webb, E., Claas, K., and Downs, D. (1998). thiBPQ Encodes an ABC Transporter Required for Transport of Thiamine and Thiamine Pyrophosphate inSalmonella typhimurium. Journal of Biological Chemistry 273, 8946-8950.
- Williams, M. L., Azadi, P., and Lawrence, M. L. (2003). Comparison of Cellular and Extracellular Products Expressed by Virulent and Attenuated Strains of *Edwardsiella ictaluri*. J Aquat Anim Health 15, 264-273.
- Williams, M. L., Gillaspy, A. F., Dyer, D. W., Thune, R. L., Waldbieser, G. C., Schuster, S. C., Gipson, J., Zaitshik, J., Landry, C., Banes, M. M., and Lawrence, M. L. (2012). Genome Sequence of *Edwardsiella ictaluri* 93-146, a Strain Associated with a Natural Channel Catfish Outbreak of Enteric Septicemia of Catfish. J Bacteriol 194, 740-1.
- Yano, T. (1996). The nonspecific immune system: humoral defense. The Fish Immune system: organism, pathogen, and environment, p105-157.
- Yew, W. S., and Gerlt, J. A. (2002). Utilization of l-Ascorbate by Escherichia coli K-12: Assignments of Functions to Products of the yjf-sga and yia-sgb Operons. J Bacteriol 184, 302-306.

- Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinalp, S. C., Ester, M., Foster, L. J., and Brinkman, F. S. L. (2010). PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608-1615.
- Zapata, G. A., Chiba, A., and Baak, M. A. (1996). Cells and tissues of the immune system of fish. The Fish Immune system: organism, pathogen, and environment, p1-62.
- Zhou, C. E., Smith, J., Lam, M., Zemla, A., Dyer, M. D., and Slezak, T. (2007). MvirDB--a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications. Nucleic Acids Res 35, 7.

APPENDIX A

COMPLETE LIST OF UP-REGULATED GENES IN E. ICTALURI 93-146 DURING

HOST ENCOUNTER

GI	Protein_product			
238921389	Putative carbamoyltransferase	6.83		
238921388	Diaminopropionate ammonia-lyase			
238921387	M20/dape family protein ygey	5.67		
238921684	Argininosuccinate synthase, putative	5.43		
238919743	Hypothetical protein	5.18		
238921380	Hypothetical protein	4.64		
238921232	Hypothetical protein	4.08		
238920425	Hypothetical protein	3.98		
238920953	Hypothetical protein	3.95		
238920412	Arginine-binding periplasmic protein 2	3.75		
238920875	Hypothetical protein	3.75		
238919771	Outer membrane protein N	3.68		
238918184	Maltoporin	3.62		
238921683	Argininosuccinate lyase, putative	3.49		
238921686	N-acetyl-gamma-glutamyl-phosphate reductase, putative	3.35		
238921318	Ornithine carbamoyltransferase chain I, putative	3.23		
238919760	Hypothetical protein	3.21		
238921375	Guanine deaminase, putative	3.21		
238920590	Phosphonopyruvate decarboxylase, putative			
238921685	Acetylglutamate kinase, putative	3.12		
238921385	Carbamate kinase, putative	3.07		
238921379	Selenium metabolism protein ssna, putative	3.06		
238921390	Hypothetical protein	3.02		
238920591	Phosphoenolpyruvate phosphomutase, putative	3.00		
238919889	Hypothetical protein	2.91		
238920409	Arginine-binding periplasmic protein 1	2.88		
238921170	Hypothetical protein	2.86		
238920952	Hypothetical protein	2.84		
238921349	Hypothetical protein	2.81		
238919742	Pyruvate kinase, putative	2.79		
238919970	Hypothetical protein	2.71		
238920896	CTP synthase, putative	2.69		
238920922	Hypothetical protein	2.69		
238918794	Amino acid permease-associated region	2.68		
238918110	Carbon starvation protein A	2.68		
238920951	Hypothetical protein	2.67		
238921206	Nucleoside-specific channel-forming protein tsx	2.65		
238918136	Translation elongation factor Tu, putative	2.63		
238920760	AHL-dependent transcriptional regulator	2.60		

9230686	Unknown	2.60		
238918070	Transcription termination factor Rho, putative			
238919443	Putative transposase for insertion sequence element			
238921243	Hypothetical protein			
238921378	Oxidoreductases, FAD binding protein	2.51		
238920247	Putative transposase for insertion sequence element	2.50		
238921538	Putative ABC transporter, perplasmic amino acid binding protein	2.50		
238918321	Hypothetical protein	2.49		
238920111	Hypothetical protein	2.48		
238920925	Hypothetical protein	2.47		
238918241	Putative transposase for insertion sequence element	2.46		
238921446	30S ribosomal protein S7, putative	2.45		
238919232	Polysialic acid capsule biosynthesis protein neud	2.44		
238921386	Dihydropyrimidinase, putative	2.42		
238921759	Hypothetical protein	2.41		
238921765	Ribonuclease P protein component, putative	2.40		
238920083	Precorrin-6Y C5,15-methyltransferase	2.39		
238919354	Hypothetical protein	2.37		
238920408	Histidine transport ATP-binding protein hisp	2.37		
238919417	lspsy18, transposase			
238920334	Xanthine permease			
238921447	30S ribosomal protein S12, putative	2.32		
238918057	Major facilitator superfamily MFS_1			
238920352	Formate/nitrite transporter	2.31		
238920926	Transposase, Mutator family	2.31		
238919848	Hypothetical protein	2.31		
238919362	Putative transposase for insertion sequence element	2.29		
238921539	Polar amino acid ABC transporter, inner membrane subunit	2.29		
238921376	Xanthine/uracil permease family protein	2.29		
238919233	N-acetylneuraminate synthase	2.28		
238918456	Hypothetical protein	2.28		
238919950	Transposase, Mutator family	2.27		
238918322	Hypothetical protein	2.26		
238921138	Formate dehydrogenase, alpha subunit, putative	2.26		
238920961	Ferritin and Dps	2.26		
238920954	Hypothetical protein	2.25		
238919655	Transposase, Mutator family	2.24		
238918313	Transposase, Mutator family	2.24		
238921139	4Fe-4S iron-sulfur binding domain protein	2.24		
238920822	Lipoyl synthase, putative	2.24		

238920941	Site-specific recombinase, phage integrase family	2.23				
238920188	Hypothetical protein 2					
238921554	Hypothetical protein 2					
238918835	Putative L-2,4-diaminobutyrate decarboxylase	2.22				
238919749	Hypothetical protein	2.21				
238918699	Transcriptional regulator pdhr	2.20				
238918155	Cation/acetate symporter actp, putative	2.20				
238919415	Putative transposase for insertion sequence element	2.18				
238918312	Transposase, Mutator family	2.18				
238918458	Hypothetical protein	2.18				
238918027	Transposase, Mutator family	2.18				
238918807	Putative transposase for insertion sequence element	2.18				
238919321	Phospholipase D3	2.17				
238921654	Periplasmic repressor cpxp	2.17				
238921303	Putative transposase for insertion sequence element	2.17				
238918578	Lipoprotein, yaec family	2.17				
238918907	Threonine dehydratase catabolic	2.17				
238919066	Putative transposase for insertion sequence element	2.16				
238921675	Hypothetical protein	2.15				
238917984	Chromosomal replication initiator protein dnaa, putative					
238918357	Hypothetical protein	2.15				
238919545	Glyceraldehyde-3-phosphate dehydrogenase, type I, putative					
238921148	Diaminopimelate decarboxylase, putative					
238921195	Lysyl-trna synthetase, putative	2.14				
238921474	Hypothetical protein	2.14				
238919963	Transposase, Mutator family	2.13				
238918580	D-methionine ABC transporter, ATP-binding protein, putative	2.13				
238918451	Hypothetical protein	2.12				
238918432	Inner membrane transport protein yhao	2.12				
238920589	NAD-dependent aldehyde dehydrogenase, putative	2.10				
238919388	Type II restriction enzyme	2.10				
238921287	Glucuronide carrier protein	2.09				
238920849	Hypothetical protein	2.09				
238918222	Hypothetical protein	2.09				
238921688	Acetylornithine deacetylase, putative	2.09				
238921491	Phosphoenolpyruvate carboxykinase (ATP)	2.08				
238920909	Periplasmic negative regulator of sigmae	2.08				
9230685	Unknown	2.07				
238918742	Prolipoprotein diacylglyceryl transferase, putative	2.07				
238918514	Phosphopentomutase, putative 2.07					

238919201	Hypothetical protein	2.07
238920821	Lipoyl(octanoyl) transferase, putative	2.07
238918435	Hypothetical protein	2.06
238920110	ls1 orf	2.06
238918065	Hypothetical protein	2.06
238921259	Cytochrome D ubiquinol oxidase subunit 1	2.05
238918325	Hypothetical protein	2.05
238921141	Hydrogenase nickel insertion protein hypa, putative	2.05
238918268	Hypothetical protein	2.04
238921381	Hypothetical protein	2.04
238918454	Hypothetical protein	2.03
238920035	Hypothetical protein	2.03
238921698	Hypothetical protein	2.03
238921295	Hypothetical protein	2.03
238920338	Hypothetical protein	2.03
238919866	DNA-binding transcriptional dual regulator	2.03
238920977	ls1 orf	2.02
238919399	Hypothetical protein	2.02
238920863	Hypothetical protein	2.02
238919550	Signal peptide peptidase sppa, 67K type, putative	2.02
238918180	Bacterial extracellular solute-binding protein, putative	2.02
9230687	Putative RNA one modulator protein	2.01
238918795	Orn/Lys/Arg decarboxylase family, putative	2.01
238921751	Phosphate ABC transporter, permease protein psta, putative	2.01
238921155	Hypothetical protein	2.01
238919416	Transposase, Mutator family	2.00

APPENDIX B

COMPLETE LIST OF DOWN-REGULATED GENES IN E. ICTALURI 93-146

DURING HOST ENCOUNTER

GI	Protein_product			
238919135	Peptidase M15B and M15C DD-carboxypeptidase vany/endolysin	-2.00		
238918440	Hypothetical protein			
238918987	Hypothetical protein	-2.01		
238919501	Crossover junction endodeoxyribonuclease ruvc, putative	-2.01		
238921503	Hypothetical protein	-2.01		
238919503	Holliday junction DNA helicase ruvb, putative	-2.02		
238919309	Hypothetical protein	-2.02		
238919748	Hypothetical protein	-2.03		
238919254	Negative regulator of flagellin synthesis	-2.03		
238918682	Cell division protein ftsa, putative	-2.03		
238919207	Hypothetical protein	-2.03		
238920639	Hypothetical protein	-2.03		
238921241	Ribonuclease	-2.04		
238920271	Ribonuclease, rnasee/rnaseg family, putative	-2.04		
238919541	Hypothetical protein	-2.05		
238919373	Hypothetical protein	-2.06		
238920754	Hypothetical protein	-2.06		
238920794	Asparagine synthase	-2.06		
238918896	Type III secretion apparatus protein spar/ysct/hrct, putative	-2.06		
238918887	Hypothetical protein	-2.06		
238921434	Hypothetical protein	-2.07		
238920432	D-alanyl-D-alanine carboxypeptidase dacc	-2.07		
238918877	Type III secretion outer membrane pore, yscc/hrcc family, putative	-2.07		
238921709	Hypothetical protein	-2.08		
238918762	Hypothetical protein	-2.08		
238919728	Phage shock protein A, putative	-2.08		
238918705	Aconitate hydratase 2, putative	-2.08		
238919084	Phosphomethylpyrimidine kinase, putative	-2.11		
238919652	Hypothetical protein	-2.11		
238918103	Cadmium-translocating P-type atpase, putative	-2.11		
238918409	Ribosomal protein L27, putative	-2.11		
238920646	Hypothetical protein	-2.11		
238920524	Hypothetical protein	-2.12		
238918798	Cytochrome c class I	-2.13		
238919734	Hypothetical protein	-2.13		
238919819	Hypothetical protein	-2.14		
238920209	Trna (5-methylaminomethyl-2-thiouridylate)-methyltransferase, putative	-2.14		
238919072	Hypothetical protein	-2.14		
238920326	Peptidoglycan-binding domain 1 protein	-2.15		

238921111	RNA polymerase sigma factor rpos, putative	-2.15		
238919706	Hypothetical protein -			
238920581	Hypothetical protein			
238920257	minodeoxychorismate lyase -2			
238920488	ABC transporter, periplasmic substrate-binding protein	-2.18		
238919730	Phage shock protein C, putative	-2.19		
238920773	KDP operon transcriptional regulatory protein kdpe	-2.19		
238920297	Flagellin	-2.19		
238920673	Transcriptional regulator, arsr family	-2.19		
238919238	Hypothetical protein	-2.20		
238918216	Copper/zinc superoxide dismutase, putative	-2.21		
238920742	Tol-pal system-associated acyl-coa thioesterase, putative	-2.21		
238920767	Hypothetical protein	-2.22		
238919451	Hypothetical protein	-2.23		
238919875	Hypothetical protein	-2.25		
238921531	Hypothetical protein	-2.26		
238920523	Hypothetical protein	-2.26		
238919993	Pyridoxamine 5'-phosphate oxidase, putative	-2.26		
238919345	Hypothetical protein	-2.27		
238919562	esponse regulator receiver protein -2			
238918867	sal, putative -			
238919040	DNA polymerase III subunit tau, putative	-2.28		
238918898	Hypothetical protein	-2.28		
238919215	Deoxycytidine triphosphate deaminase, putative	-2.29		
238920014	Cation efflux system protein cusf	-2.29		
238919375	Calcium/cation antiporter (caca)	-2.30		
238919015	DNA-binding protein HU-beta	-2.31		
238918392	3'(2'),5'-bisphosphate nucleotidase, putative	-2.33		
238919836	Hypothetical protein	-2.33		
238919783	Translation initiation factor IF-3, putative	-2.33		
238919650	Universal stress protein family, putative	-2.34		
238921702	Glutamine synthetase, type I, putative	-2.35		
238919283	Hypothetical protein	-2.35		
238918882	Hypothetical protein	-2.36		
238919919	Hypothetical protein	-2.36		
238920413	Methylated DNA protein cysteine S-methyltransferase family, putative	-2.36		
238920876	Bifunctional protein fold, putative	-2.37		
238921502	Hypothetical protein	-2.37		
238919773	Hypothetical protein	-2.37		
238918256	Hypothetical protein -2.37			

		1		
238919807	Hypothetical protein			
238918516	Soluble cytochrome b562			
238920204	Hypothetical protein			
238920104	Hypothetical protein	-2.40		
238918937	Hypothetical protein	-2.40		
238920231	Hypothetical protein	-2.41		
238919020	HAD hydrolase, IIB family	-2.43		
238921640	Hypothetical protein	-2.43		
238919287	Hypothetical protein	-2.44		
238919736	Hypothetical protein	-2.44		
238919731	Hypothetical protein	-2.44		
238918611	Hypothetical protein	-2.44		
238921317	Hypothetical protein	-2.45		
238918875	Hypothetical protein	-2.46		
238918334	Hypothetical protein	-2.47		
238918862	Hypothetical protein	-2.47		
238919194	GTP cyclohydrolase I, putative	-2.47		
238921051	Iron-sulfur cluster assembly protein isca, putative	-2.49		
238920640	Hypothetical protein	-2.49		
238919705	Hypothetical protein	-2.49		
238920205	Prophage lambda integrase	-2.50		
238920202	Hypothetical protein	-2.50		
238920713	Hypothetical protein	-2.51		
238919073	Hypothetical protein	-2.51		
238918343	Hypothetical protein	-2.51		
238918924	Hypothetical protein	-2.52		
238920506	Hypothetical protein	-2.52		
238918876	Type III secretion apparatus protein, yscd/hrpq family, putative	-2.53		
238919209	Hypothetical protein	-2.56		
238918485	Hypothetical protein	-2.56		
238920215	Transcriptional regulatory protein phop	-2.56		
238919704	Hypothetical protein	-2.58		
238920382	Hypothetical protein	-2.58		
238921634	Hypothetical protein	-2.58		
238920998	Hypothetical protein	-2.58		
238919762	Hypothetical protein	-2.61		
238919288	Hypothetical protein	-2.61		
238919801	Hypothetical protein	-2.62		
238918254	Orn/Lys/Arg decarboxylase family, putative -2.62			
238919646	Hypothetical protein -2.6			

238920218	NAD-dependent deacetylase -2			
238921054	ron-sulfur cluster assembly transcription factor iscr, putative			
238920974	lypothetical protein			
238920381	TP-dependent Clp protease ATP-binding subunit clpa, putative			
238919300	Hypothetical protein	-2.73		
238918880	Escb	-2.76		
238918253	Lysine/cadaverine transport protein	-2.76		
238919535	Spovr family protein	-2.76		
238919035	Hypothetical protein	-2.77		
238921354	Hypothetical protein	-2.77		
238919741	Hypothetical protein	-2.78		
238919580	Hypothetical protein	-2.78		
238919609	Hypothetical protein	-2.79		
238919395	Hypothetical protein	-2.80		
238921240	Barstar	-2.83		
238921052	Fes cluster assembly scaffold iscu, putative	-2.84		
238920054	Hypothetical protein	-2.89		
238918707	Hypothetical protein	-2.89		
238921530	Hypothetical protein	-2.89		
238918574	lypothetical protein -			
238919905	tability protein stbe			
238920200	Hypothetical protein	-2.93		
238919540	Hypothetical protein	-2.94		
238920332	Hypothetical protein	-2.94		
238919502	Holliday junction DNA helicase ruva, putative	-2.95		
238919918	Hypothetical protein	-2.95		
238920679	Hypothetical protein	-2.96		
238919452	Hypothetical protein	-2.98		
238919912	Hypothetical protein	-3.01		
238920272	Hypothetical protein	-3.01		
238919997	Transcriptional regulator, marr family	-3.04		
238919707	Hypothetical protein	-3.05		
238918800	Hypothetical protein	-3.07		
238918900	Hypothetical protein	-3.07		
238920198	Hypothetical protein	-3.09		
238918944	Hypothetical protein	-3.11		
238920194	Hypothetical protein	-3.12		
238920999	Hypothetical protein	-3.13		
238919837	Hypothetical protein -3.13			
238919464	Hypothetical protein	-3.15		

238918888	Hypothetical protein	-3.18		
238920195	Hypothetical protein			
238919133	Hypothetical protein			
238919913	Hypothetical protein	-3.22		
238918708	Hypothetical protein	-3.23		
238918892	Regulatory protein	-3.29		
238919009	Hypothetical protein	-3.33		
238920199	Hypothetical protein	-3.41		
238919626	Hypothetical protein	-3.42		
238919177	Cell division protein zipa, putative	-3.45		
238918186	Chorismate-pyruvate lyase, putative	-3.47		
238920197	Hypothetical protein	-3.51		
238919036	Hypothetical protein	-3.53		
238920484	Hypothetical protein	-3.56		
238918367	Trna delta(2) -isopentenylpyrophosphate transferase, putative	-3.59		
238918732	RNA polymerase-binding protein dksa, putative	-3.60		
238919832	Hypothetical protein	-3.61		
238919700	Spheroplast protein Y	-3.73		
238918845	Outer membrane lipoprotein blc	-3.73		
238918681	Cell division protein ftsq	-3.73		
238919446	Hypothetical protein	-3.79		
238919184	Hypothetical protein	-3.81		
238918861	Putative B-type cytochomre	-3.81		
238919617	Hypothetical protein	-3.83		
238920508	Transposon tn10 tetd protein (orfr)	-3.84		
238918863	Hypothetical protein	-3.85		
238918201	Repressor lexa, putative	-3.87		
238919833	Hypothetical protein	-3.90		
238920511	Hypothetical protein	-3.92		
238919858	Uspa domain protein	-3.98		
238918895	Esas	-4.03		
238918890	Hypothetical protein	-4.07		
238920510	Transcriptional regulator, tetr family	-4.08		
238918868	Hypothetical protein	-4.10		
238919142	Nitrate/nitrite response regulator protein narp	-4.10		
238921353	Protein yedy	-4.11		
238920001	Hypothetical protein	-4.14		
238918921	Hypothetical protein	-4.22		
238918894	Type III secretion apparatus protein, yscr/hrcr family, putative	-4.25		
238919904	Hypothetical protein -4.26			

238920203	Hypothetical protein	-4.27
238919158	Dihydroxyacetone kinase, L subunit, putative	-4.27
238920003	Hypothetical protein	-4.33
238918889	Hypothetical protein	-4.36
238920474	Hypothetical protein	-4.38
238918870	Type III secretion apparatus lipoprotein, yscj/hrcj family, putative	-4.39
238918869	Hypothetical protein	-4.47
238919048	Acetate operon repressor	-4.49
238919587	Hypothetical protein	-4.59
238919157	PTS-dependent dihydroxyacetone kinase, dihydroxyacetone- bindingsubunit dhak	-4.74
238920733	Hypothetical protein	-4.96
238920002	Hypothetical protein	-4.98
238918878	Hypothetical protein	-5.04
238918893	Hypothetical protein	-5.22
238920936	DNA repair protein recn, putative	-5.27
238919187	Hypothetical protein	-5.34
238919616	Hypothetical protein	-5.35
238919303	Hypothetical protein	-5.41
238920599	Hypothetical protein	-5.49
238919311	Hypothetical protein	-5.49
238918871	Esai, putative	-5.60
238920238	Hypothetical protein	-5.69
238920230	Hypothetical protein	-5.77
238919522	Outer membrane protein slp	-5.85
238918891	Flagellum-specific ATP synthase	-5.94
238919826	Pyruvate:ferredoxin	-5.99
238920344	Integration host factor, beta subunit, putative	-6.05
238921352	Protein yedy	-6.11
238919788	Integration host factor, alpha subunit, putative	-6.12
238918872	Hypothetical protein	-6.68
238921575	Hypothetical protein	-6.81
238918873	Type III secretion apparatus needle protein, putative	-8.49
238918874	Esrc	-8.77

APPENDIX C

256 DEGs IN E. ICTALURI 93-146 ANNOTATED BY BLAST2GO DURING HOST

ENCOUNTER

108

GI	GO ID	Protein product
238919734	GO:0016740	3-mercaptopyruvate sulfurtransferase
238918409	GO:0005840	50s ribosomal protein I27
238918937	GO:0009851	Abc transporter atp-binding protein
238921685	GO:0005737	Acetylglutamate kinase
238921688	GO:0005737	Acetylornithine deacetylase
238918705	GO:0003994	Aconitate hydratase 2
238920589	GO:0055114	Aldehyde dehydrogenase family protein
238921539	GO:0006810	Amino acid abc transporter
238920257	GO:0046656	Aminodeoxychorismate lyase
238920272	GO:0005737	Antibiotic biosynthesis monooxygenase
238920408	GO:0016887	Arginine abc atp-binding protein
238920409	GO:0006810	Arginine-binding periplasmic protein 1
238920412	GO:0006810	Arginine-binding periplasmic protein 2
238921683	GO:0005737	Argininosuccinate lyase
238921684	GO:0005737	Argininosuccinate synthase
238920794	GO:0004066	Asparagine synthase
238921389	GO:0016597	Aspartate ornithine carbamoyltransferase family protein
238920382	GO:0008233	Atp-dependent clp protease adaptor protein
238920381	GO:0009851	Atp-dependent clp protease atp-binding subunit
238919375	GO:0016021	Calcium proton antiporter
238918451	GO:0005886	Camphor resistance protein
238921385	GO:0008652	Carbamate kinase
238918110	GO:0016020	Carbon starvation protein
238919135	GO:0004180	Carboxypeptidase
238918155	GO:0005887	Cation acetate symporter
238919303	GO:0009432	Cell division inhibitor
238918681	GO:0051301	Cell division protein
238918682	GO:0005524	Cell division protein
238919177	GO:0007049	Cell division protein
238921640	GO:0007049	Cell division protein zapb
238921379	GO:0016810	Chlorohydrolase aminohydrolase
238918186	GO:0005737	Chorismatepyruvate lyase
238917984	GO:0005737	Chromosomal replication initiator protein
238921052	GO:0005506	Cluster assembly scaffold
238920083	GO:0016491	Cobalt-precorrin-6y c -methyltransferase
238919020	GO:0008152	Cof-like hydrolase
238919617	GO:0060567	Cold shock protein
238918440	GO:0010181	Conserved protein
238918216	GO:0046872	Copper zinc superoxide dismutase
238920896	GO:0006541	Ctp synthetase
238919760	GO:0008610	Cyclopropane fatty acyl phospholipid synthase
238918798	GO:0020037	Cytochrome
238918862	GO:0022904	Cytochrome b561
238918516	GO:0000155	Cytochrome b562
238921259	GO:0055114	Cytochrome d ubiquinol oxidase subunit 1
238920432	GO:0006508	D-alanyl-d-alanine carboxypeptidase
238919215	GO:0009220	Deoxycytidine triphosphate deaminase

238921148	GO:0009089	Diaminopimelate decarboxylase
238921388	GO:0030170	Diaminopropionate ammonia-lyase
238921386	GO:0046872	Dihydropyrimidinase
238919157	GO:0006071	Dihydroxyacetone kinase
238919158	GO:0006071	Dihydroxyacetone l subunit
238918578	GO:0031225	DI-methionine transporter substrate-binding subunit
238918580	GO:0009851	D-methionine abc atp-binding protein
238919040	GO:0009851	Dna polymerase iii subunits gamma and tau
238920936	GO:0005524	Dna repair protein
238921502	GO:0016226	Dna uptake protein
238920200	GO:0017111	Dna-binding protein
238919015	GO:0006350	Dna-binding protein hu-beta
238920506	GO:0003700	Dna-binding transcriptional regulator
238921390	GO:0017111	Dna-binding transcriptional regulator
238920230	GO:0006281	Dna-damage-inducible protein i
238921139	GO:0046872	Electron transport protein
238919207	GO:0004527	Endonuclease iv
238919819	GO:0016787	Esterase
238918762	GO:0003887	Exonuclease ix
238920326	GO:0008152	Family protein
238920297	GO:0005576	Flagellin
238919807	GO:0003824	Flavin reductase
238920524	GO:0010181	Flavodoxin nitric oxide synthase
238921138	GO:0055114	Formate dehydrogenase h
238920352	GO:0006810	Formate transporter 1
238918458	GO:0006064	Glucuronate isomerase
238921287	GO:0016020	Glucuronide transporter
238920484	GO:0006810	Glutamine abc transporter periplasmic protein
238921702	GO:0005737	Glutamine synthetase
238919545	GO:0006006	Glyceraldehyde-3-phosphate type i
238919833	GO:0005978	Glycogen synthesis protein
238919194	GO:0005737	Gtp cyclohydrolase i
238921375	GO:0008270	Guanine deaminase
238918611	GO:0016787	Had-superfamily hydrolase
238919311	GO:0009408	Heat shock protein
238919801	GO:0009851	Hemin transport system atp-binding protein
238919704	GO:0016787	Histidine triad protein
238919502	GO:0009432	Holliday junction dna helicase
238919503	GO:0009851	Holliday junction dna helicase
238919501	GO:0003676	Holliday junction resolvase
238921141	GO:0006464	Hydrogenase nickel incorporation protein
238918875	GO:0009405	Hypothetical protein NT01EI_0941 [Edwardsiella ictaluri 93-146]
238919646	GO:0016021	Inner membrane protein
238920523	GO:0016021	Inner membrane protein
238918392	GO:0016020	Inositol monophosphatase family protein
238918708	GO:0016020	Integral membrane protein
238919788	GO:0003677	Integration host alpha subunit
238920344	GO:0003677	Integration host factor subunit beta

238921051	GO:0005506	Iron-sulfur cluster assembly protein				
238921054	GO:0046872	Iron-sulfur cluster assembly transcription factor				
238920974	GO:0009061	Iron-sulfur cluster insertion protein				
238920110	GO:0006313	ls1 orf				
238920977	GO:0006313	ls1 orf				
9230686	GO:0006313	Is4 family protein				
238920849	GO:0003677	ls630 transposase				
238918835	GO:0030170	Ldiaminobutyrate decarboxylase				
238920821	GO:0005737	Lipoate-protein ligase b				
238920822	GO:0005737	Lipoyl synthase				
238919201	GO:0005886	Lrga family protein				
238918253	GO:0016021	Lysine cadaverine antiporter				
238918794	GO:0016021	Lysine cadaverine antiporter				
238918254	GO:0030170	Lysine decarboxylase 1				
238918795	GO:0030170	Lysine decarboxylase 1				
238921195	GO:0005737	Lysyl-trna synthetase				
238921387	GO:0046983	M20 family protein				
238919970	GO:0055085	Major facilitator family transporter				
238918057	GO:0055085	Major facilitator superfamily mfs_1				
238919741	GO:0005624	Major outer membrane lipoprotein				
238918184	GO:0015288	Maltoporin				
238918180	GO:0055052	Maltose abc transporter periplasmic protein				
238919184	GO:0016021	Manganese transport protein				
238918357	GO:0055085	Vechanosensitive ion channel domain protein				
238919036	GO:0016021	Membrane protein				
238920876	GO:0009086	Methenyltetrahydrofolate cyclohydrolase				
238920413	GO:0006281	Methylated-dnaprotein-cysteine methyltransferase				
238921381	GO:0005515	Molybdenum hydroxylase accessory family				
238921352	GO:0046872	Molybdopterin binding				
238920001	GO:0005737	Monothiol glutaredoxin				
238918027	GO:0006313	Mutator family				
238918312	GO:0006313	Mutator family				
238918313	GO:0006313	Mutator family				
238919416	GO:0006313	Mutator family				
238919417	GO:0006313	Mutator family				
238919655	GO:0006313	Mutator family				
238919950	GO:0006313	Mutator family				
238919963	GO:0006313	Mutator family				
238920926	GO:0006313	Mutator family				
238921686	GO:0005737	N-acetyl-gamma-glutamyl-phosphate reductase				
238919232	GO:0055114	N-acetylneuraminate synthase				
238919233	GO:0050462	N-acetylneuraminate synthase				
238920218	GO:0070403	Nad-dependent deacetylase				
238920599	GO:0044237	Nad-dependent epimerase dehydratase family protein				
238919254	GO:0019861	Negative regulator of flagellin synthesis				
238919142	GO:0000160	Nitrate nitrite response regulator protein				
238921206	GO:0004872	Nucleoside-specific channel-forming protein tsx				
238921318	GO:0006526	Ornithine carbamoyltransferase				

238918845	GO:0005215	Outer membrane lipoprotein blc				
238919771	GO:0009279	Outer membrane protein				
238919522	GO:0019867	Outer membrane slp family				
238918863	GO:0055114	Oxidoreductase molybdopterin binding protein				
238919875	GO:0016805	Peptidase family c69				
238919700	GO:0042597	Periplasmic stress adaptor protein				
238919730	GO:0003677	Phage shock protein c				
238920204	GO:0003677	Phage-related dna-binding protein				
238918485	GO:0004810	Phosphatase				
238921751	GO:0016021	Phosphate transporter permease subunit				
238921491	GO:0005737	Phosphoenolpyruvate carboxykinase				
238920591	GO:0050188	Phosphoenolpyruvate phosphomutase				
238919133	GO:0016787	Phospholipase carboxylesterase				
238919321	GO:0008152	Phospholipase d family protein				
238919084	GO:0008972	Phosphomethylpyrimidine kinase				
238920590	GO:0033980	Phosphonopyruvate decarboxylase				
238918514	GO:0005737	Phosphopentomutase				
238921538	GO:0006810	Polar amino acid abc periplasmic amino acid-binding protein				
238918742	GO:0016021	Prolipoprotein diacylglyceryl transferase				
238920205	GO:0008907	Prophage lambda integrase				
238919550	GO:0006465	Protease 4				
238918334	GO:0005515	Protein				
238919009	GO:0003677	Protein				
238919993	GO:0008615	Pyridoxamine 5 -phosphate oxidase				
238918699	GO:0005622	Pyruvate dehydrogenase complex repressor				
238919742	GO:0004743	Pyruvate kinase				
238919826	GO:0030976	Pyruvate-flavodoxin oxidoreductase				
238920760	GO:0000160	Quorum-sensing transcriptional regulator				
238919866	GO:0043565	Regulatory protein				
238918201	GO:0006281	Repressor				
238919562	GO:0000160	Response regulator receiver protein				
238921241	GO:0004521	Ribonuclease				
238921698	GO:0004540	Ribonuclease bn				
238920271	GO:0004540	Ribonuclease e				
238921765	GO:0001682	Ribonuclease p				
238921434	GO:0005840	Ribosomal protein I29				
238921447	GO:0006412	Ribosomal protein s12				
238921446	GO:0003735	Ribosomal protein s7				
238921554	GO:0003676	Rna family				
238921111	GO:0003700	Rna polymerase sigma factor				
238918732	GO:0008270	Rna polymerase-binding transcription factor				
238920511	GO:0016020	Secretion protein family protein				
238918873	GO:0015031	Secretion system apparatus				
238918867	GO:0046903	Secretion system apparatus protein				
238918892	GO:0016021	Secretion system apparatus protein				
238921378	GO:0055114	Selenate fad-binding subunit				
238921380	GO:0055114	Selenate subunit				
238919541	GO:0016787	Serine protein				

238918432	GO:0006810	Serine transporter				
238919848	GO:0055114	Short chain dehydrogenase				
238920909	GO:0042597	Sigma-e factor regulatory protein				
238920941	GO:0003677	Site-specific phage integrase family				
238919072	GO:0008233	Spfh domain band 7 family protein				
238920961	GO:0008199	Stress response dna-binding protein				
238920488	GO:0005215	Substrate-binding transport protein				
238921353	GO:0046872	Sulfite oxidase subunit				
238921354	GO:0016491	Sulfite oxidase subunit				
238918895	GO:0016021	T3ss structure protein				
238920338	GO:0008690	Tetraacyldisaccharide 4 -kinase				
238919707	GO:0016301	Thiamine kinase				
238918268	GO:0030976	Thiamine pyrophosphate protein tpp binding domain protein				
238919736	GO:0045454	Thiol peroxidase				
238918861	GO:0022904	Thiosulfate reductase cytochrome b subunit (membrane anchoring protein)				
238921530	GO:0006071	Thiosulfate sulfurtransferase				
238918907	GO:0005737	Threonine dehydratase				
238920742	GO:0005515	Tol-pal system-associated acyl- thioesterase				
238920998	GO:0043565	Toxin-antitoxin antitoxin xre family				
238918070	GO:0003723	Transcription termination factor rho				
238918874	GO:0043565	Transcriptional family				
238920508	GO:0043565	Transcriptional family				
238920510	GO:0003700	ranscriptional family				
238920673	GO:0005622	ranscriptional family				
238919997	GO:0005622	Transcriptional regulator				
238920215	GO:0000160	Transcriptional regulatory protein				
238919048	GO:0003677	Transcriptional repressor				
238919919	GO:0043565	Transcriptional xre family				
238918898	GO:0016787	Transglycosylase signal peptide protein				
238918136	GO:0005737	Translation elongation factor tu				
238919783	GO:0005737	Translation initiation factor if-3				
238918454	GO:0055085	Transport protein				
238920035	GO:0006313	Transposase				
238920111	GO:0003677	Transposase				
238918241	GO:0006313	Transposase for insertion sequence element				
238918807	GO:0006313	Transposase for insertion sequence element				
238919066	GO:0006313	Transposase for insertion sequence element				
238919362	GO:0006313	Transposase for insertion sequence element				
238919415	GO:0006313	Transposase for insertion sequence element				
238919443	GO:0006313	Transposase for insertion sequence element				
238920247	GO:0006313	Transposase for insertion sequence element				
238921303	GO:0006313	Transposase for insertion sequence element				
238921243	GO:0016021	Trap subunit				
238920209	GO:0005737	Trna (5-methylaminomethyl-2-thiouridylate)-methyltransferase				
238918367	GO:0009851	Trna delta -isopentenylpyrophosphate transferase				
238918900	GO:0000156	Two component transcriptional family				
238920773	GO:0000160	Two component transcriptional winged helix family				
238919388	GO:0009307	Type ii restriction enzyme				

238918871	GO:0009306	Type iii secretion apparatus			
238918894	GO:0016021	Type iii secretion apparatus family			
238918880	GO:0006950	Type iii secretion low calcium response chaperone			
238918877	GO:0009279	Type iii secretion outer membrane family			
238918896	GO:0016021	Type iii secretion protein			
238918870	GO:0009306	Type iii secretion system apparatus lipoprotein			
238918891	GO:0015078	Type iii secretion system atpase			
238918435	GO:0005515	J32 family			
238921575	GO:0005886	Jniversal stress protein			
238919858	GO:0005737	Jniversal stress protein e			
238919650	GO:0006950	Jniversal stress protein f			
238920334	GO:0055085	Xanthine permease			
238921376	GO:0055085	Xanthine uracil permease family protein			
238918103	GO:0008551	Zinc cadmium mercury lead-transporting atpase			
238918065	GO:0003755	#Name?			
238918921	GO:0004872	#Name?			
238920733	GO:0005737	#Name?			

APPENDIX D

56 DEGs REPRESENTED IN MVirDB IN E. ICTALURI 93-146 DURING HOST

ENCOUNTER

Query	Description	Greatest identity %
gi 238918180 ref YP_002931694.1	Full=Maltose-binding periplasmic protein; altname: Full=MBP; altname: Full=MMBP; altname: Full=Maltodextrin-binding protein; Flags: Precursor;	100
gi 238918216 ref YP_002931730.1	Polysaccharide synthesis enzyme Cap8O [Staphylococcus aureus subsp. Aureus MW2]	66
gi 238918253 ref YP_002931767.1	Lysin/cadaverin transporter [Escherichia coli]	64
gi 238918254 ref YP_002931768.1	Cadaverin decarboxylase [Escherichia coli]	66
gi 238918440 ref YP_002931954.1	Protein STM3270 [Salmonella typhimurium LT2]	48
gi 238918580 ref YP_002932094.1	Of the ABC transporter complex bceab TC 3.A.1.123.5 involved in bacitracin export. Responsible for energy coupling to the transport system.	40
gi 238918794 ref YP_002932308.1	Lysin/cadaverin transporter [Escherichia coli]	66
gi 238918795 ref YP_002932309.1	Cadaverin decarboxylase [Escherichia coli]	67
gi 238918845 ref YP_002932359.1	Full=lipoprotein lpp20;	93
gi 238918863 ref YP_002932377.1	Protein [Escherichia coli]	69
gi 238918870 ref YP_002932384.1	III secretion system apparatus lipoprotein [Yersinia pestis CO92]	54
gi 238918874 ref YP_002932388.1	Family transcriptional regulator [Yersinia pestis CO92]	56
gi 238918876 ref YP_002932390.1	Type-III secretion protein [Yersinia pestis CO92]	50
gi 238918877 ref YP_002932391.1	Full=FLAGELLIN; subname: Full=Flagellin;	90
gi 238918891 ref YP_002932405.1	III secretion system atpase [Yersinia pestis CO92]	59
gi 238918892 ref YP_002932406.1	System apparatus protein ssav [Yersinia pestis CO92]	53
gi 238918894 ref YP_002932408.1	Type III secretion apparatus protein [Yersinia pestis CO92]	91
gi 238918896 ref YP_002932410.1	Type III secretion apparatus protein [Yersinia pestis CO92]	71
gi 238918900 ref YP_002932414.1	Two-component response regulator [Yersinia pestis CO92]	49
gi 238918937 ref YP_002932451.1	III ABC transporter ATP-binding protein [Haemophilus influenzae Rd KW20]	66
gi 238919015 ref YP_002932529.1	Binding	93
gi 238919142 ref YP_002932656.1	Component transcriptional regulatory protein devr [Mycobacterium tuberculosis H37Rv]	42
gi 238919232 ref YP_002932747.1	Protein [Streptococcus agalactiae 2603V/R]	36
gi 238919233 ref YP_002932748.1	Neuramic acid synthetase neub [Streptococcus agalactiae 2603V/R]	57
gi 238919254 ref YP_002932769.1	Factor flgm [Yersinia enterocolitica subsp. Enterocolitica 8081]	65
gi 238919311 ref YP_002932826.1	Nonribosomal peptide synthetase [Yersinia pestis KIM]	52
gi 238919321 ref YP_002932836.1	D	26
gi 238919416 ref YP_002932931.1	Full=IL-1 beta binding protein C9R; subname: Full=Interleukin 1 beta receptor;	36
gi 238919736 ref YP_002933251.1	Peroxidase [Vibrio cholerae O1 biovar El Tor str. N16961]	41

gi 238919742 ref YP_002933257.1	Kinase [Salmonella typhimurium LT2]	88
gi 238919760 ref YP_002933275.1	[Mycobacterium tuberculosis H37Rv]	39
gi 238919771 ref YP_002933286.1	Full=Outer membrane protein S2; Flags: Precursor;	100
gi 238919788 ref YP_002933303.1	Full=Integration host factor subunit alpha; Short=IHF- alpha;	100
gi 238919801 ref YP_002933316.1	Transport system ATP-binding protein [Yersinia pestis CO92]	55
gi 238919807 ref YP_002933322.1	Protein c4316 [Escherichia coli CFT073]	49
gi 238920035 ref YP_002933550.1	Transposase [Shigella flexneri 2a]	91
gi 238920215 ref YP_002933730.1	Regulator	82
gi 238920297 ref YP_002933812.1	Full=flagellin;	100
gi 238920326 ref YP_002933841.1	Protein STM0995 [Salmonella enterica subsp. Enterica serovar Typhimurium str. LT2]	51
gi 238920344 ref YP_002933859.1	Full=Integration host factor subunit beta; Short=IHF- beta;	100
gi 238920381 ref YP_002933896.1	Clp ATP-binding chain C [Listeria monocytogenes EGD- e]	53
gi 238920408 ref YP_002933923.1	III transport ATP binding protein sfuc like	69
gi 238920508 ref YP_002934023.1	Full=Carbamate kinase; EC=2.7.2.2;	46
gi 238920589 ref YP_002934104.1	Membrane protein [Yersinia pestis KIM]	35
gi 238920639 ref YP_002934154.1	[Pseudomonas aeruginosa PAO1]	29
gi 238920767 ref YP_002934282.1	Inner membrane protein [Salmonella typhimurium LT2]	55
gi 238920909 ref YP_002934424.1	Regulator for alginate biosynthesis mucb [Pseudomonas aeruginosa PAO1]	33
gi 238921111 ref YP_002934626.1	Polymerase sigma factor rpos [Salmonella typhimurium LT2]	84
gi 238921138 ref YP_002934653.1	Full=Epstein-Barr virus nuclear antigen EBNA-3C ;	44
gi 238921141 ref YP_002934656.1	Hydrogenase nickel incorporation protein hybf [Morganella morganii subsp. Morganii]	57
gi 238921195 ref YP_002934710.1	Lysil-trna synthetase lysu [Escherichia coli]	67
gi 238921206 ref YP_002934721.1	Precursor 1d [Burkholderia pseudomallei]	95
gi 238921318 ref YP_002934833.1	Full=nifr1 protein;	41
gi 238921385 ref YP_002934900.1	Full=Carbamate kinase-like protein yqea;	100
gi 238921390 ref YP_002934905.1	Full=Transcriptional regulator nifa family ;	78
gi 238921702 ref YP_002935217.1	Synthetase GLNA1 glutamine synthase GS-I [Mycobacterium tuberculosis H37Rv]	51

APPENDIX E

35 DEGs IN EiAKMUT02 ANNOTATED BY BLAST2GO DURING HOST

ENCOUNTER

GI	GO ID	Protein product
gi 9230686 gb AAF85957.1 AF244083_3	GO:0006313	Is4 family protein
gi 238918020 ref YP_002931534.1	GO:0003676	Transposase
		Type i restriction-modification enzyme r
gi 238918024 ref YP_002931538.1	GO:0055085	subunit
gi 238918081 ref YP_002931595.1	GO:0016021	Eca biosynthesis protein
gi 238918276 ref YP_002931790.1	GO:0005737	Arginine repressor
gi 238918281 ref YP_002931795.1	GO:0003677	Hypothetical protein NT01EI_0318 [Edwardsiella ictaluri 93-146]
gi 238918457 ref YP_002931971.1	GO:0006810	D-galactonate transporter
gi 238918460 ref YP_002931974.1	GO:0008789	Altronate hydrolase
gi 238918508 ref YP_002932022.1	GO:0006006	Pyruvate formate lyase activating enzyme
gi 238918647 ref YP_002932161.1	GO:0009851	Thiamine transporter atp-binding subunit
gi 238918654 ref YP_002932168.1	GO:0009851	Hemolysin secretion atp-binding protein
gi 238919586 ref YP_002933101.1	GO:0009279	Outer membrane protein w
gi 238919927 ref YP_002933442.1	GO:0016491	Dna replication protein gp18
gi 238919951 ref YP_002933466.1	GO:0016021	Ammonium transporter
gi 238920043 ref YP_002933558.1	GO:0016021	Cryptic c4-dicarboxylate transporter
gi 238920189 ref YP_002933704.1	GO:0003677	Phage antitermination protein q
gi 238920400 ref YP_002933915.1	GO:0015904	Multidrug resistance bcr family
gi 238920715 ref YP_002934230.1	GO:0008168	Biotin biosynthesis protein
gi 238920717 ref YP_002934232.1	GO:0005737	Biotin synthase
gi 238920722 ref YP_002934237.1	GO:0016021	Molybdate abc permease protein
gi 238921088 ref YP_002934603.1	GO:0005840	30s ribosomal protein s16
gi 238921151 ref YP_002934666.1	GO:0009279	Exported protein
gi 238921167 ref YP_002934682.1	GO:0005488	Adhesin hemagglutinin
gi 238921273 ref YP_002934788.1	GO:0006313	Oxalate formate antiporter
gi 238921338 ref YP_002934853.1	GO:0005886	Inner membrane protein
gi 238921420 ref YP_002934935.1	GO:0030371	Ribosomal protein s4
gi 238921426 ref YP_002934941.1	GO:0005840	Ribosomal protein l18
gi 238921428 ref YP_002934943.1	GO:0030371	30s ribosomal protein s8
gi 238921429 ref YP_002934944.1	GO:0003735	30s ribosomal protein s14
gi 238921430 ref YP_002934945.1	GO:0005840	50s ribosomal protein I5
gi 238921445 ref YP_002934960.1	GO:0005737	Translation elongation factor g
gi 238921446 ref YP_002934961.1	GO:0003735	Ribosomal protein s7
gi 238921447 ref YP_002934962.1	GO:0006412	Ribosomal protein s12
gi 238921506 ref YP_002935021.1	GO:0009401	Ascorbate-specific pts system enzyme iic
gi 238921507 ref YP_002935022.1	GO:0005737	L-ascorbate-specific enzyme iib component of pts

APPENDIX F

COMPLETE LIST OF UP-REGULATED GENES IN EIAKMUT02 COMPARED TO

E. ICTALURI WT UNDER NORMAL SPF SERUM EXPOSURE

GI	FC	P.Value	Protein_product		
238920048	3.02	0.04	Hypothetical protein		
238921170	2.99	0.04	Hypothetical protein		
238919357	2.95	0.04	Hypothetical protein		
238920091	2.87	0.04	Hypothetical protein		
238920836	2.67	0.04	Hypothetical protein		
238918222	2.66	0.04	Hypothetical protein		
238918020	2.62	0.04	Transposase A		
238921490	2.55	0.02	Hypothetical protein		
238921182	2.53	0.04	Hypothetical protein		
238920400	2.51	0.05	Drug resistance transporter, Bcr/cfla family		
238918276	2.5	0.05	Arginine repressor, C- domain protein		
238918017	2.45	0.02	Hypothetical protein		
238921541	2.44	0.05	Amino acid ABC transporter, permease protein, 3-TM region, His/Glu/Gln/Arg/opine		
238921675	2.33	0.04	Hypothetical protein		
238920443	2.3	0.03	Putative beta1,4-galactosyltransferase		
238920135	2.24	0.04	Hypothetical protein		
238921678	2.23	0.02	Hypothetical protein		
238920442	2.22	0.04	Hypothetical protein		
238921005	2.19	0.03	Hypothetical protein		
238919417	2.19	0.04	Ispsy18, transposase		
238921605	2.17	0.03	Hypothetical protein		
238921577	2.14	0.04	Hypothetical protein		
238918309	2.14	0.04	Hypothetical protein		
238919415	2.13	0.05	Putative transposase for insertion sequence element		
238918357	2.1	0.04	Hypothetical protein		
238918919	2.06	0.03	Hypothetical protein		
238918226	2.06	0.05	Hypothetical protein		
238921728	2.05	0.04	Low affinity potassium transport system protein kup		
238918111	2.02	0.02	Carbon starvation protein A		
238921759	2.01	0.03	Hypothetical protein		
238918173	2.01	0.04	Hypothetical protein		
238921260	2	0.04	Rubredoxin		
238919366	1.98	0.04	Hypothetical protein		
238921607	1.98	0.01	Hypothetical protein		
238921209	1.97	0.05	Glycine dehydrogenase, putative		
238921606	1.96	0.02	Hypothetical protein		
238921654	1.95	0.03	Periplasmic repressor cpxp		
238921574	1.95	0.02	Hypothetical protein		
238920924	1.94	0.04	Integrase core domain protein		

121

238921569	1.93	0.03	Hypothetical protein
238920679	1.93	0.03	Hypothetical protein
238918273	1.93	0.03	Hypothetical protein
238921496	1.93	0.01	Hypothetical protein
238918006	1.92	0.03	Hypothetical protein
238918305	1.91	0.03	Hypothetical protein
238918024	1.91	0.02	Type I restriction-modification system, R subunit
238918112	1.91	0.05	Carbon starvation protein A-like protein, putative
238918975	1.9	0.02	Protein-export membrane protein secf, putative
238918019	1.89	0.04	Hypothetical protein
238920852	1.89	0.02	Hypothetical protein
238918321	1.88	0.01	Hypothetical protein
238921399	1.88	0	Homoserine O-succinyltransferase, putative
238918303	1.88	0.04	Hypothetical protein
238920612	1.87	0.03	Hypothetical protein
238921725	1.87	0.03	Ribose transport system permease protein rbsc
238921732	1.85	0.03	Asnc-family transcriptional regulator
238918036	1.84	0.02	DNA repair protein rade
238918289	1.84	0.03	Hypothetical protein
238919962	1.83	0.02	Hypothetical protein
238921626	1.82	0.05	Hypothetical protein
238921731	1.81	0.02	Aspartateammonia ligase, putative
238921632	1.81	0.04	Hypothetical protein
238918381	1.81	0.05	Hypothetical protein
238921730	1.8	0	Hypothetical protein
238920916	1.8	0.04	Hypothetical protein
238918130	1.79	0.03	Potassium uptake protein, trkh family
238921000	1.78	0.02	Baseplate assembly protein V (gpv)
238918260	1.77	0.03	Hypothetical protein
238919624	1.77	0.05	Hypothetical protein
238919957	1.77	0.04	Urease, alpha subunit, putative
238919371	1.75	0.04	Hypothetical protein
238921302	1.75	0.03	Hypothetical protein
238921507	1.74	0.04	Hypothetical protein
238921698	1.72	0.03	Hypothetical protein
238918177	1.72	0.01	Hypothetical protein
238921367	1.72	0	Hypothetical protein
238918455	1.71	0.03	Hypothetical protein
238920919	1.71	0.03	Hypothetical protein
238921414	1.7	0.02	Large-conductance mechanosensitive channel

238918947	1.69	0.04	Hsdr		
238921002	1.69	0.03	Baseplate assembly protein J (gpj)		
238921487	1.68	0.04	Ydhu		
238921705	1.67	0.02	Hypothetical protein		
238921345	1.67	0.05	Rod shape-determining protein mred, putative		
238921673	1.67	0.03	Outer membrane protein N		
238921638	1.67	0.03	Glycerol uptake facilitator protein		
238921570	1.65	0.05	Mg2+ transporter mgtb, putative		
238918413	1.65	0.03	Transcriptional regulatory protein basr/pmra		
238921481	1.64	0.01	Hypothetical protein		
238918806	1.64	0.03	Hypothetical protein		
238918009	1.63	0.04	Hypothetical protein		
238920853	1.63	0.03	Ibra		
238919262	1.63	0.04	Flagellar L-ring protein flgh, putative		
238921727	1.63	0.04	High affinity ribose transport protein rbsd		
238919771	1.61	0.01	Outer membrane protein N		
238921582	1.61	0.03	Hypothetical protein		
238918590	1.61	0.03	Hypothetical protein		
238921244	1.6	0.04	Tripartite ATP-independent periplasmic transporter dctq component		
238920688	1.6	0.03	Methyl-accepting chemotaxis protein, putative		
238918653	1.6	0.04	Hypothetical protein		
238921603	1.58	0.02	Hypothetical protein		
238920307	1.57	0.02	Hypothetical protein		
238921299	1.56	0.03	Hypothetical protein		
238920232	1.56	0.03	Hypothetical protein		
238918942	1.55	0.05	N-acetylneuraminate transporter, sodium-glucose/galactose cotransporter		
238918016	1.55	0.04	Hypothetical protein		
238921687	1.53	0.05	Hypothetical protein		
238919001	1.51	0.03	Hypothetical protein		

APPENDIX G

COMPLETE LIST OF DOWN-REGULATED GENES IN EIAKMUT02 COMPARED

TO E. ICTALURI WT UNDER NORMAL SPF SERUM EXPOSURE

GI	FC	P.Value	Protein_product		
238918927	-1.50	0.02	Oxygen-insensitive NAD(P)		
238918945	-1.50	0.01	Hypothetical protein		
238921133	-1.51	0.03	Hydrogenase-4 component H		
238918989	-1.51	0.02	Riboflavin biosynthesis protein ribd, putative		
238918661	-1.51	0.03	3-isopropylmalate dehydrogenase, putative		
238919183	-1.51	0.01	Pyrimidine nucleoside transport protein		
238920822	-1.51	0.01	Lipoyl synthase, putative		
238920907	-1.52	0.04	GTP-binding protein lepa, putative		
238921410	-1.52	0.02	Methionyl-trna formyltransferase, putative		
238920711	-1.52	0.00	Hypothetical protein		
238921239	-1.53	0.02	Hypothetical protein		
238918458	-1.53	0.02	Hypothetical protein		
238918774	-1.53	0.02	Translation elongation factor Ts, putative		
238921684	-1.54	0.02	Argininosuccinate synthase, putative		
238919737	-1.54	0.05	Periplasmic murein peptide-binding protein		
238919438	-1.55	0.01	Hypothetical protein		
238920239	-1.55	0.00	Hypothetical protein		
238921255	-1.55	0.01	Hypothetical protein		
238919469	-1.55	0.02	Glutamyl-trna reductase, putative		
238919606	-1.55	0.02	Cob(I)yrinic acid a,c-diamide adenosyltransferase, putative		
238921379	-1.56	0.02	Selenium metabolism protein ssna, putative		
238918030	-1.56	0.01	Ribonuclease PH, putative		
238918948	-1.56	0.00	Atpase associated with various cellular activities, AAA_5		
238921086	-1.56	0.05	Trna (guanine-N1)-methyltransferase, putative		
238919603	-1.57	0.00	RNA pseudouridine synthase family protein		
238920548	-1.57	0.02	[Ni/Fe] hydrogenase, small subunit		
238918827	-1.57	0.00	Glutamine-dependent NAD(+)(+)		
238919271	-1.57	0.01	Nicotinate phosphoribosyltransferase, putative		
238921356	-1.57	0.02	Acetyl-coa carboxylase, biotin carboxyl carrier protein, putative		
238920314	-1.58	0.02	Flagellum-specific ATP synthase, putative		
238919382	-1.58	0.03	Hypothetical protein		
238920483	-1.58	0.04	Hypothetical protein		
238918213	-1.59	0.03	Hypothetical protein		
238918421	-1.60	0.03	Preprotein translocase, secg subunit, putative		
238920526	-1.60	0.01	Molybdopterin converting factor, subunit 1, putative		
238920016	-1.60	0.01	Transcriptional activator protein copr		
238918427	-1.60	0.02	Ribosomal protein S15, putative		
238921083	-1.60	0.01	Hypothetical protein		
238918409	-1.60	0.01	Ribosomal protein L27, putative		
238920608	-1.60	0.00	Trna pseudouridine synthase A, putative		
238919134	-1.60	0.03	Hypothetical protein		
238919172	-1.60	0.05	Phosphoenolpyruvate-protein phosphotransferase, putative		
238918031	-1.60	0.04	Orotate phosphoribosyltransferase, putative		
238920333	-1.61	0.00	Amidohydrolase family, putative		
238919374	-1.61	0.05	Hypothetical protein		
238919071	-1.61	0.02	Hypothetical protein		
238920217	-1.61	0.04	Hypothetical protein		
238920090	-1.62	0.04	Hypothetical protein		

238918492	-1.62	0.02	Bifunctional protein hlde, putative		
238919489	-1.62	0.00	Hypothetical protein		
238918349	-1.62	0.01	Translation elongation factor P, putative		
238918501	-1.62	0.00	Ribosomal RNA small subunit methyltransferase C (2)		
238918434	-1.63	0.00	Hypothetical protein		
238919860	-1.63	0.00	Hypothetical protein		
238920658	-1.64	0.01	Hypothetical protein		
238918385	-1.64	0.01	Ribosomal protein S18, putative		
238920001	-1.64	0.03	Hypothetical protein		
			Bifunctional phosphopantothenoylcysteine		
238918034	-1.64	0.04	decarboxylase/phosphopantothenate-cysteine ligase, putative		
238919675	-1.65	0.03	Melibiose operon regulatory protein		
238921089	-1.65	0.02	Signal recognition particle protein, putative		
238921023	-1.65	0.00	GMP synthase		
238918863	-1.65	0.01	Hypothetical protein		
238921440	-1.66	0.03	Hypothetical protein		
238921380	-1.67	0.04	Hypothetical protein		
238920914	-1.68	0.04	ATP-dependent RNA helicase srmb		
238918862	-1.68	0.00	Hypothetical protein		
238919831	-1.68	0.00	Hypothetical protein		
238919137	-1.69	0.00	Arsc family protein		
238918708	-1.69	0.04	Hypothetical protein		
238919180	-1.69	0.00	Glutamyl-trna synthetase, putative		
238921143	-1.69	0.01	Hydrogenase assembly chaperone hypc/hupf, putative		
238918399	-1.69	0.03	Inorganic diphosphatase, putative		
238920879	-1.69	0.02	Cysteinyl-trna synthetase, putative		
238920902	-1.69	0.05	Pyridoxine 5'-phosphate synthase, putative		
238919005	-1.69	0.00	Hypothetical protein		
238920240	-1.70	0.00	Orotidine 5'-phosphate decarboxylase, putative		
238919991	-1.70	0.03	Pyridoxal kinase, putative		
238919605	-1.70	0.03	Phosphatase, putative		
238920349	-1.70	0.03	Phosphoserine aminotransferase, putative		
238919298	-1.71	0.02	Beta-hydroxyacyl-(acyl-carrier-protein) dehydratase faba, putative		
238920246	-1.71	0.00	Leucine-rich repeat protein		
238921110	-1.71	0.04	DNA mismatch repair protein muts, putative		
238918619	-1.72	0.01	Hypothetical protein		
238919270	-1.72	0.02	Asparaginyl-trna synthetase, putative		
238920290	-1.73	0.01	ABC transporter, ATP-binding protein, putative		
238918361	-1.73	0.02	Oligoribonuclease		
238918051	-1.73	0.02	Lipopolysaccharide heptosyltransferase I, putative		
238921378	-1.73	0.01	Oxidoreductases, FAD binding protein		
238920576	-1.73	0.01	5'-nucleotidase, putative		
238921321	-1.74	0.01	Anaerobic glycerol-3-phosphate dehydrogenase subunit B		
238918568	-1.74	0.01	Hypothetical protein		
238917987	-1.75	0.02	DNA gyrase, B subunit, putative		
238919557	-1.75	0.00	Exodeoxyribonuclease III, putative		
238918692	-1.76	0.01	Guanosine monophosphate reductase, putative		
238919490	-1.77	0.03	Aminotransferase, class II		
238921389	-1.77	0.02	Putative carbamoyltransferase		

238921441	-1.77	0.05	50S ribosomal protein L4
238920481	-1.78	0.00	Multiphosphoryl transfer protein (MTP)
238919824	-1.78	0.00	Glutamate synthase family, small subunit, putative
238918815	-1.78	0.01	Hypothetical protein
238920712	-1.78	0.01	Excinuclease ABC subunit B, putative
238918732	-1.79	0.01	RNA polymerase-binding protein dksa, putative
238918444	-1.79	0.01	Hypothetical protein
238921202	-1.79	0.01	Hypothetical protein
238918408	-1.79	0.01	Ribosomal protein L21, putative
238920609	-1.80	0.01	Aspartate-semialdehyde dehydrogenase, putative
238920524	-1.80	0.01	Hypothetical protein
238920578	-1.80	0.02	Hypothetical protein
238919121	-1.80	0.01	Uracil phosphoribosyltransferase, putative
238918851	-1.80	0.02	Gamma-glutamyl phosphate reductase
238920273	-1.81	0.03	Dihydroorotase, homodimeric type, putative
238919820	-1.81	0.02	Hypothetical protein
238921388	-1.82	0.01	Diaminopropionate ammonia-lyase
238920896	-1.82	0.03	CTP synthase, putative
238919041	-1.82	0.04	Hypothetical protein
238918255	-1.83	0.03	Glutathionylspermidine synthase
238920525	-1.84	0.01	Molybdopterin converting factor, subunit 2, putative
238921320	-1.84	0.00	Sn-glycerol-3-phosphate dehydrogenase subunit C, putative
238920212	-1.84	0.01	Adenylosuccinate lyase, putative
238919285	-1.84	0.00	Hypothetical protein
238921042	-1.85	0.01	Radical SAM enzyme, Cfr family
238920390	-1.85	0.04	Hydroxylamine reductase, putative
238917996	-1.87	0.02	Glycyl-trna synthetase, beta subunit, putative
238918804	-1.87	0.01	Lipoprotein nlpe
238919112	-1.88	0.02	Hypothetical protein
238919286	-1.89	0.01	Dihydroorotate oxidase, putative
238919980	-1.90	0.01	Hypothetical protein
238921637	-1.90	0.03	Glycerol kinase, putative
238920265	-1.91	0.03	Hypothetical protein
238919693	-1.91	0.03	Prop effector, putative
			Trna (5-methylaminomethyl-2-thiouridylate)-methyltransferase,
238920209	-1.94	0.03	putative
238920065	-1.94	0.04	Homoaconitate hydratase family protein, large subunit
238919466	-1.95	0.02	Hypothetical protein
238921392	-1.97	0.02	Single-stranded DNA-binding protein (SSB)
238919758	-1.97	0.00	Phosphoribosylglycinamide formyltransferase 2, putative
238920346	-1.98	0.00	Cytidylate kinase, putative
238920497	-2.00	0.00	Hypothetical protein
238919383	-2.01	0.01	Beta-aspartyl peptidase, putative
238918029	-2.02	0.00	Hypothetical protein
238919425	-2.02	0.01	Hypothetical protein
238919055	-2.03	0.00	Adenylate kinase
238920464	-2.04	0.01	Hypothetical protein
238919552	-2.04	0.02	Selenide, water dikinase, putative
238919488	-2.05	0.02	Arginyl-trna synthetase, putative

238920344	-2.05	0.01	Integration host factor, beta subunit, putative
238920953	-2.07	0.03	Hypothetical protein
238921387	-2.07	0.00	M20/dape family protein ygey
238921596	-2.08	0.01	Hypothetical protein
238920054	-2.08	0.04	Hypothetical protein
238919826	-2.08	0.00	Pyruvate:ferredoxin
238919974	-2.09	0.02	Fumarate hydratase, class II, putative
238921701	-2.09	0.04	GTP-binding protein typa/bipa, putative
238919120	-2.10	0.00	Phosphoribosylformylglycinamidine cyclo-ligase, putative
238921322	-2.11	0.00	Anaerobic glycerol-3-phosphate dehydrogenase subunit A
238921208	-2.11	0.00	Hypothetical protein
238918052	-2.12	0.03	Lipopolysaccharide heptosyltransferase II, putative
238918256	-2.12	0.03	Hypothetical protein
238919996	-2.14	0.00	Outer membrane lipoprotein pcp
238918139	-2.15	0.03	Ribosomal protein L11, putative
238919743	-2.15	0.01	Hypothetical protein
238919010	-2.16	0.01	Trigger factor, putative
238921352	-2.17	0.02	Protein yedy
238920729	-2.19	0.01	Galactose-1-phosphate uridylyltransferase, putative
238920367	-2.19	0.02	Anaerobic dimethyl sulfoxide reductase chain A, putative
238920520	-2.23	0.03	Ribonucleoside-diphosphate reductase, alpha subunit, putative
238919284	-2.25	0.01	Hypothetical protein
238919742	-2.25	0.01	Pyruvate kinase, putative
238921432	-2.26	0.01	50S ribosomal protein L14, putative
238918140	-2.28	0.01	Ribosomal protein L1, putative
238920615	-2.30	0.04	Hypothetical protein
238918353	-2.31	0.01	Fumarate reductase iron-sulfur subunit
238918629	-2.31	0.01	Xanthine dehydrogenase molybdenum-binding subunit
238920284	-2.41	0.00	Hypothetical protein
238918632	-2.48	0.02	Carbamoyl-phosphate synthase, small subunit, putative
238918354	-2.62	0.03	Fumarate reductase, flavoprotein subunit, putative
238918542	-2.64	0.01	Ribosomal protein L13, putative
238920969	-2.64	0.01	Protease do
238920480	-2.70	0.00	1-phosphofructokinase, putative
238921088	-2.86	0.01	Ribosomal protein S16, putative
238919782	-2.87	0.01	Threonyl-trna synthetase, putative
238918480	-3.27	0.00	Ribosomal protein S21, putative
238919729	-3.57	0.04	Phage shock protein B, putative
238920479	-3.60	0.00	Pts system fructose-specific eiibc component
238921446	-3.61	0.00	30S ribosomal protein S7, putative
238921024	-3.69	0.00	Inosine-5'-monophosphate dehydrogenase, putative
238919644	-3.77	0.00	Extracellular solute-binding protein family 5
238918384	-4.03	0.00	Ribosomal protein S6, putative
238921447	-4.21	0.00	30S ribosomal protein S12, putative

APPENDIX H

216 DEGS IN EIAKMUT02 ANNOTATED BY BLAST2GO COMPARED TO WT

UNDER NORMAL SPF SERUM EXPOSURE

GI	GO ID	Protein product
gi 238917987 ref YP_002931501.1	GO:0009851	Dna gyrase subunit b
gi 238917996 ref YP_002931510.1	GO:0005737	Glycyl-trna synthetase subunit beta
gi 238918009 ref YP_002931523.1	GO:0055085	Purine permease yice
gi 238918020 ref YP_002931534.1	GO:0003676	Transposase
gi 238918024 ref YP_002931538.1	GO:0055085	Type i restriction-modification enzyme r subunit
gi 238918030 ref YP_002931544.1	GO:0000175	Ribonuclease ph
gi 238918031 ref YP_002931545.1	GO:0005737	Orotate phosphoribosyltransferase
gi 238918034 ref YP_002931548.1	GO:0015937	Phosphopantothenatecysteine ligase
gi 238918036 ref YP_002931550.1	GO:0006281	Dna repair protein
gi 238918051 ref YP_002931565.1	GO:0009103	Lipopolysaccharide heptosyltransferase i
gi 238918052 ref YP_002931566.1	GO:0009103	Adp-heptose:lps heptosyltransferase ii
gi 238918112 ref YP_002931626.1	GO:0016020	Carbon starvation protein
gi 238918130 ref YP_002931644.1	GO:0016021	Potassium transporter
gi 238918139 ref YP_002931653.1	GO:0006415	Ribosomal protein l11
gi 238918140 ref YP_002931654.1	GO:0003735	50s ribosomal protein l1
gi 238918177 ref YP_002931691.1	GO:0016021	Phosphate-starvation-inducible protein
gi 238918213 ref YP_002931727.1	GO:0016021	Adhesin virulence factor hek
gi 238918226 ref YP_002931740.1	GO:0006313	Transposase
gi 238918255 ref YP_002931769.1	GO:0003824	Glutathionylspermidine synthase
gi 238918276 ref YP_002931790.1	GO:0005737	Arginine repressor
gi 238918349 ref YP_002931863.1	GO:0043022	Translation elongation factor p
gi 238918353 ref YP_002931867.1	GO:0046872	Fumarate reductase iron-sulfur subunit
gi 238918354 ref YP_002931868.1	GO:0009061	Fumarate reductase flavoprotein subunit
gi 238918357 ref YP_002931871.1	GO:0055085	Mechanosensitive ion channel domain protein
gi 238918361 ref YP_002931875.1	GO:0003676	Oligoribonuclease
gi 238918384 ref YP_002931898.1	GO:0005840	Ribosomal protein s6
gi 238918385 ref YP_002931899.1	GO:0005840	30s ribosomal protein s18
gi 238918399 ref YP_002931913.1	GO:0004427	Inorganic pyrophosphatase
gi 238918408 ref YP_002931922.1	GO:0005840	50s ribosomal protein l21
gi 238918409 ref YP_002931923.1	GO:0005840	50s ribosomal protein I27
gi 238918413 ref YP_002931927.1	GO:0000160	Two-component system response regulator
gi 238918421 ref YP_002931935.1	GO:0015450	Preprotein translocase subunit
gi 238918427 ref YP_002931941.1	GO:0003735	Ribosomal protein s15
gi 238918434 ref YP_002931948.1	GO:0008233	U32 family
gi 238918458 ref YP_002931972.1	GO:0006064	Glucuronate isomerase
gi 238918480 ref YP_002931994.1	GO:0003735	30s ribosomal protein s21
gi 238918492 ref YP_002932006.1	GO:0019200	Bifunctional protein
gi 238918501 ref YP_002932015.1	GO:0005737	Ribosomal rna small subunit

		methyltransferase c
gi 238918542 ref YP_002932056.1	GO:0005840	Ribosomal protein l13
gi 238918568 ref YP_002932082.1	GO:0016887	Abc transporter atp-binding protein
gi 238918629 ref YP_002932143.1	GO:0055114	Xanthine dehydrogenase
gi 238918632 ref YP_002932146.1	GO:0005829	Carbamoyl-phosphate small subunit
gi 238918653 ref YP_002932167.1	GO:0009851	Hemolysin secretion atp-binding
gi 238918661 ref YP_002932175.1	GO:0005737	3-isopropylmalate dehydrogenase
gi 238918692 ref YP_002932206.1	GO:0046872	Gmp reductase
gi 238918708 ref YP_002932222.1	GO:0016020	Integral membrane protein
gi 238918732 ref YP_002932246.1	GO:0008270	Rna polymerase-binding transcription factor
gi 238918774 ref YP_002932288.1	GO:0005737	Translation elongation factor ts
gi 238918806 ref YP_002932320.1	GO:0003677	Site-specific phage integrase family
gi 238918815 ref YP_002932329.1	GO:0005529	Dna-binding transcriptional regulator
gi 238918827 ref YP_002932341.1	GO:0009851	Glutamine-dependent nad
gi 238918851 ref YP_002932365.1	GO:0055114	Gamma-glutamyl phosphate reductase
gi 238918862 ref YP_002932376.1	GO:0022904	Cytochrome b561
gi 238918863 ref YP_002932377.1	GO:0055114	Oxidoreductase molybdopterin binding protein
gi 238918927 ref YP_002932441.1	GO:0055114	Dihydropteridine reductase
gi 238918942 ref YP_002932456.1	GO:0004222	Sodium glucose cotransporter
gi 238918945 ref YP_002932459.1	GO:0006306	Type i restriction-modification m subunit
gi 238918947 ref YP_002932461.1	GO:0004386	Type i site specific deoxyribonuclease
gi 238918948 ref YP_002932462.1	GO:0016887	Atpase family protein
gi 238918975 ref YP_002932489.1	GO:0015450	Protein-export membrane protein
gi 238918989 ref YP_002932503.1	GO:0009231	Riboflavin biosynthesis protein
gi 238919010 ref YP_002932524.1	GO:0051083	Trigger factor
gi 238919041 ref YP_002932555.1	GO:0003677	Conserved protein
gi 238919055 ref YP_002932569.1	GO:0005737	Adenylate kinase
gi 238919071 ref YP_002932585.1	GO:0016020	Nodulation efficiency protein d
gi 238919120 ref YP_002932634.1	GO:0005737	Phosphoribosylformylglycinamidine cyclo- ligase
gi 238919121 ref YP_002932635.1	GO:0006223	Uracil phosphoribosyltransferase
gi 238919134 ref YP_002932648.1	GO:0005886	Membrane protein
gi 238919172 ref YP_002932686.1	GO:0005737	Phosphoenolpyruvate-protein phosphotransferase
gi 238919180 ref YP_002932694.1	GO:0005737	Glutamyl-trna synthetase
gi 238919183 ref YP_002932698.1	GO:0016020	Nucleoside permease
gi 238919262 ref YP_002932777.1	GO:0001539	Flagellar I-ring protein
gi 238919270 ref YP_002932785.1	GO:0004816	Asparaginyl-trna synthetase
gi 238919271 ref YP_002932786.1	GO:0005737	Nicotinate phosphoribosyltransferase
gi 238919284 ref YP_002932799.1	GO:0006629	Hypothetical protein NT01EI_1374 [Edwardsiella ictaluri 93-146]

131

gi 238919286 ref YP_002932801.1	GO:0019898	Dihydroorotate oxidase
gi 238919298 ref YP_002932813.1	GO:0006633	Beta-hydroxyacyl-(acyl-carrier-protein) dehydratase
gi 238919371 ref YP_002932886.1	GO:0019861	Response regulator receiver protein
gi 238919382 ref YP_002932897.1	GO:0016021	C4-dicarboxylate transporter
gi 238919383 ref YP_002932898.1	GO:0016810	Beta-aspartyl peptidase
gi 238919415 ref YP_002932930.1	GO:0006313	Transposase for insertion sequence element
gi 238919417 ref YP_002932932.1	GO:0006313	Mutator family
gi 238919466 ref YP_002932981.1	GO:0005737	Ribose-phosphate pyrophosphokinase
gi 238919466 ref YP_002932981.1	GO:0016301	
gi 238919469 ref YP_002932984.1	GO:0005737	Glutamyl-trna reductase
gi 238919488 ref YP_002933003.1	GO:0005737	Arginyl-trna synthetase
gi 238919490 ref YP_002933005.1	GO:0030170	Aminotransferase class i and ii
gi 238919552 ref YP_002933067.1	GO:0005524	Water dikinase
gi 238919557 ref YP_002933072.1	GO:0004519	Exodeoxyribonuclease iii
gi 238919603 ref YP_002933118.1	GO:0009982	23s rrna pseudouridylate synthase b
gi 238919605 ref YP_002933120.1	GO:0043755	Alpha-ribazole phosphatase
gi 238919606 ref YP_002933121.1	GO:0005737	Cob yrinic acid -diamide adenosyltransferase
gi 238919644 ref YP_002933159.1	GO:0005215	Nickel abc transporter periplasmic nickel- binding protein
gi 238919675 ref YP_002933190.1	GO:0043565	Melibiose operon regulatory protein
gi 238919693 ref YP_002933208.1	GO:0005737	Effector
gi 238919729 ref YP_002933244.1	GO:0006350	Phage shock protein b
gi 238919737 ref YP_002933252.1	GO:0005215	Periplasmic murein peptide-binding protein
gi 238919742 ref YP_002933257.1	GO:0004743	Pyruvate kinase
gi 238919758 ref YP_002933273.1	GO:0009152	Phosphoribosylglycinamide formyltransferase 2
gi 238919771 ref YP_002933286.1	GO:0009279	Outer membrane protein
gi 238919782 ref YP_002933297.1	GO:0005737	Threonyl-trna synthetase
gi 238919820 ref YP_002933335.1	GO:0030001	Zinc transport protein zntb
gi 238919824 ref YP_002933339.1	GO:0006537	Oxidoreductase fe-s binding subunit
gi 238919826 ref YP_002933341.1	GO:0030976	Pyruvate-flavodoxin oxidoreductase
gi 238919860 ref YP_002933375.1	GO:0008233	U32 family
gi 238919957 ref YP_002933472.1	GO:0005737	Urease subunit alpha
gi 238919962 ref YP_002933477.1	GO:0006313	ls1400 transposase a
gi 238919974 ref YP_002933489.1	GO:0045239	Fumarate hydratase
gi 238919980 ref YP_002933495.1	GO:0004329	Formatetetrahydrofolate ligase
gi 238919991 ref YP_002933506.1	GO:0004340	Pyridoxamine kinase
gi 238919996 ref YP_002933511.1	GO:0019867	Outer membrane lipoprotein
gi 238920001 ref YP_002933516.1	GO:0005737	Monothiol glutaredoxin
gi 238920016 ref YP_002933531.1	GO:0005737	Dna-binding transcriptional activator

gi 238920065 ref YP_002933580.1	GO:0003861	Homoaconitate hydratase family protein
gil 228020200 rof VD_002022724.1	CO:000E727	Trna (5-methylaminomethyl-2-
gi[238920209]101]1P_002933724.1]	00.0003737	thiouridylate)-methyltransferase
gi 238920212 ref YP_002933727.1	GO:0006188	Adenylosuccinate lyase
gi 238920217 ref YP_002933732.1	GO:0005515	Cupin 4 family protein
gi 238920239 ref YP_002933754.1	GO:0006413	Translation initiation factor sui1
gi 238920240 ref YP_002933755.1	GO:0006207	Orotidine 5 -phosphate decarboxylase
gi 238920246 ref YP_002933761.1	GO:0020002	Leucine-rich repeat protein
gi 238920273 ref YP_002933788.1	GO:0004151	Dihydroorotase
gi 238920284 ref YP_002933799.1	GO:0016874	Lichenysin synthetase b
gi 238920290 ref YP_002933805.1	GO:0016887	Amino-acid abc transporter atp-binding protein
gi 238920314 ref YP_002933829.1	GO:0009851	Flagellum-specific atp synthase
gi 238920333 ref YP_002933848.1	GO:0018763	Hydroxydechloroatrazine ethylaminohydrolase
gi 238920344 ref YP_002933859.1	GO:0003677	Integration host factor subunit beta
gi 238920346 ref YP_002933861.1	GO:0005737	Cytidylate kinase
gi 238920349 ref YP_002933864.1	GO:0005737	Phosphoserine aminotransferase
gi 238920367 ref YP_002933882.1	GO:0055114	Anaerobic dimethyl sulfoxide reductase chain a
gi 238920390 ref YP_002933905.1	GO:0046872	Hydroxylamine reductase
gi 238920400 ref YP_002933915.1	GO:0015904	Multidrug resistance bcr family
gi 238920443 ref YP_002933958.1	GO:0009103	Glycosyl transferase family 25
gi 238920479 ref YP_002933994.1	GO:0016301	Phosphotransferase eiic
gi 238920480 ref YP_002933995.1	GO:0008662	1-phosphofructokinase
gi 238920481 ref YP_002933996.1	GO:0016301	Hpr family
gi 238920497 ref YP_002934012.1	GO:0005840	50s ribosomal protein I25
gi 238920520 ref YP_002934035.1	GO:0005971	Ribonucleoside-diphosphate alpha subunit
gi 238920524 ref YP_002934039.1	GO:0010181	Flavodoxin nitric oxide synthase
gi 238920525 ref YP_002934040.1	GO:0016740	Molybdopterin guanine dinucleotide biosynthesis protein
gi 238920526 ref YP_002934041.1	GO:0006790	Molybdopterin converting subunit 1
gi 238920548 ref YP_002934063.1	GO:0009375	Hydrogenase-2 small chain
gi 238920576 ref YP_002934091.1	GO:0008253	Metal dependent phosphohydrolase
gi 238920578 ref YP_002934093.1	GO:0008152	Had-superfamily subfamily variant 3
gi 238920608 ref YP_002934123.1	GO:0003723	Trna pseudouridine synthase a
gi 238920609 ref YP_002934124.1	GO:0005737	Semialdehyde dehydrogenase
gi 238920615 ref YP_002934130.1	GO:0006633	3-oxoacyl-
gi 238920688 ref YP_002934203.1	GO:0016021	Methyl-accepting chemotaxis sensory transducer
gi 238920711 ref YP_002934226.1	GO:0003676	Hypothetical protein NT01EI_2824 [Edwardsiella ictaluri 93-146]
gi 238920712 ref YP_002934227.1	GO:0005737	Excinuclease abc subunit b

gi 238920729 ref YP_002934244.1	GO:0008270	Galactose-1-phosphate uridylyltransferase
gi 238920822 ref YP_002934337.1	GO:0005737	Lipoyl synthase
gi 238920852 ref YP_002934367.1	GO:0003677	Immunoglobulin-binding regulator b
gi 238920853 ref YP_002934368.1	GO:0055114	Immunoglobulin-binding regulator a
gi 238920879 ref YP_002934394.1	GO:0005737	Cysteinyl-trna synthetase
gi 238920896 ref YP_002934411.1	GO:0006541	Ctp synthetase
gi 238920902 ref YP_002934417.1	GO:0008615	Pyridoxal phosphate biosynthetic protein
gi 238920907 ref YP_002934422.1	GO:0003924	Gtp-binding protein
gi 238920914 ref YP_002934429.1	GO:0009851	Atp-dependent rna helicase
gi 238920924 ref YP_002934439.1	GO:0003677	Transposase
gi 238920969 ref YP_002934484.1	GO:0055114	Protease do
gi 238921023 ref YP_002934538.1	GO:0006177	Gmp synthase
gi 238921024 ref YP_002934539.1	GO:0003938	Inosine 5 -monophosphate dehydrogenase
gi 238921042 ref YP_002934557.1	GO:0005737	Ribosomal rna large subunit methyltransferase n
gi 238921086 ref YP_002934601.1	GO:0005737	Trna (guanine-n -)-methyltransferase
gi 238921088 ref YP_002934603.1	GO:0005840	30s ribosomal protein s16
gi 238921089 ref YP_002934604.1	GO:0005525	Signal recognition particle protein
gi 238921110 ref YP_002934625.1	GO:0005524	Dna mismatch repair protein
gi 238921133 ref YP_002934648.1	GO:0051539	Hydrogenase-4 component h
gi 238921133 ref YP_002934648.1	GO:0046872	
gi 238921133 ref YP_002934648.1	GO:0009055	
gi 238921208 ref YP_002934723.1	GO:0016020	Sodium:alanine symporter family protein
gi 238921209 ref YP_002934724.1	GO:0004375	Glycine dehydrogenase
gi 238921255 ref YP_002934770.1	GO:0008610	Cyclopropane-fatty-acyl-phospholipid synthase
gi 238921260 ref YP_002934775.1	GO:0046872	Rubredoxin-type fe 4 protein
gi 238921320 ref YP_002934835.1	GO:0055114	Anaerobic glycerol-3-phosphate dehydrogenase subunit c
gi 238921321 ref YP_002934836.1	GO:0055114	Anaerobic glycerol-3-phosphate dehydrogenase subunit b
gi 238921322 ref YP_002934837.1	GO:0006072	Anaerobic glycerol-3-phosphate dehydrogenase subunit a
gi 238921345 ref YP_002934860.1	GO:0016021	Rod shape-determining protein
gi 238921352 ref YP_002934867.1	GO:0046872	Molybdopterin binding
gi 238921356 ref YP_002934871.1	GO:0006633	Acetyl- biotin carboxyl carrier protein
gi 238921378 ref YP_002934893.1	GO:0055114	Selenate fad-binding subunit
gi 238921379 ref YP_002934894.1	GO:0016810	Chlorohydrolase aminohydrolase
gi 238921380 ref YP_002934895.1	GO:0055114	Selenate subunit
gi 238921387 ref YP_002934902.1	GO:0046983	M20 family protein
gi 238921388 ref YP_002934903.1	GO:0030170	Diaminopropionate ammonia-lyase
gi 238921389 ref YP_002934904.1	GO:0016597	Aspartate ornithine carbamoyltransferase family protein

gi 238921392 ref YP_002934907.1	GO:0006260	Single-stranded dna-binding protein
gi 238921399 ref YP_002934914.1	GO:0005737	Homoserine o-succinyltransferase
gi 238921410 ref YP_002934925.1	GO:0006412	Methionyl-trna formyltransferase
gi 238921414 ref YP_002934929.1	GO:0016021	Large-conductance mechanosensitive channel
gi 238921432 ref YP_002934947.1	GO:0003735	50s ribosomal protein 114
gi 238921440 ref YP_002934955.1	GO:0005840	50s ribosomal protein I23
gi 238921441 ref YP_002934956.1	GO:0030371	50s ribosomal protein l4
gi 238921446 ref YP_002934961.1	GO:0003735	Ribosomal protein s7
gi 238921447 ref YP_002934962.1	GO:0006412	Ribosomal protein s12
gi 238921487 ref YP_002935002.1	GO:0022904	Thiosulfate reductase cytochrome b subunit
gi 238921507 ref YP_002935022.1	GO:0005737	L-ascorbate-specific enzyme iib component of pts
gi 238921541 ref YP_002935056.1	GO:0005886	Abc transporter permease component
gi 238921570 ref YP_002935085.1	GO:0015693	Magnesium-translocating p-type atpase
gi 238921582 ref YP_002935097.1	GO:0016301	Carbohydrate kinase
gi 238921596 ref YP_002935111.1	GO:0004222	Insulinase family protease
gi 238921605 ref YP_002935120.1	GO:0016020	Cellulose synthase
gi 238921626 ref YP_002935141.1	GO:0055085	Major facilitator superfamily mfs_1
gi 238921632 ref YP_002935147.1	GO:0016021	Conserved inner membrane protein
gi 238921637 ref YP_002935152.1	GO:0004370	Glycerol kinase
gi 238921638 ref YP_002935153.1	GO:0055085	Glycerol uptake facilitator protein
gi 238921673 ref YP_002935188.1	GO:0016020	Porin gram-negative type
gi 238921684 ref YP_002935199.1	GO:0005737	Argininosuccinate synthase
gi 238921698 ref YP_002935213.1	GO:0004540	Ribonuclease bn
gi 238921701 ref YP_002935216.1	GO:0003746	Gtp-binding protein
gi 238921725 ref YP_002935240.1	GO:0015407	Ribose transport system permease protein rbsc
gi 238921727 ref YP_002935242.1	GO:0005737	D-ribose pyranase
gi 238921728 ref YP_002935243.1	GO:0015079	Low affinity potassium transport system protein kup
gi 238921730 ref YP_002935245.1	GO:0005515	Protein viaa
gi 238921731 ref YP_002935246.1	GO:0005737	Aspartateammonia ligase
gi 238921732 ref YP_002935247.1	GO:0043565	Transcriptional family

APPENDIX I

129 DEGs INVOLVED IN HOST PATHOGEN INTERACTION IN EIAKMUT02

COMPARED TO WT UNDER NORMAL SPF SERUM EXPOSURE

		o/ · I · · ·		
Query Id	Subject id	% identity	E-value	Bit score
gi 238917987 ref YP_002931501.1	UNIPROT_AC:Q5NHE7	65.55	0	1044
gi 238917996 ref YP_002931510.1	UNIPROT_AC:Q5NGR8	41.8	6.00E-153	536
gi 238918009 ref YP_002931523.1	UNIPROT_AC:Q8D1S0	85.06	0	763
gi 238918016 ref YP_002931530.1	UNIPROT_AC:Q7CLB3	76.92	3.00E-70	259
gi 238918020 ref YP_002931534.1	UNIPROT_AC:P69961	51.81	3.00E-16	78.6
gi 238918030 ref YP_002931544.1	UNIPROT_AC:Q8ZJP8	87.34	5.00E-114	405
gi 238918031 ref YP_002931545.1	UNIPROT_AC:Q8ZJP7	81.69	7.00E-102	365
gi 238918034 ref YP_002931548.1	UNIPROT_AC:Q96CD2	30.98	6.00E-15	77.4
gi 238918256 ref YP_002931770.1	UNIPROT_AC:Q7CGH1	71.62	1.00E-82	301
gi 238918349 ref YP_002931863.1	UNIPROT_AC:Q6KMS8	45.28	2.00E-36	146
gi 238918353 ref YP_002931867.1	UNIPROT_AC:Q5NIJ2	36.24	6.00E-37	149
gi 238918354 ref YP_002931868.1	UNIPROT_AC:Q7CKM6	85.84	0	1020
gi 238918357 ref YP_002931871.1	UNIPROT_AC:Q7CKM5	54.76	2.00E-23	102
gi 238918413 ref YP_002931927.1	UNIPROT_AC:Q7CJR6	42.78	1.00E-29	125
gi 238918458 ref YP_002931972.1	UNIPROT_AC:Q8ZIC6	83.8	0	832
gi 238918492 ref YP_002932006.1	UNIPROT_AC:Q8ZI60	82.32	0	787
gi 238918501 ref YP_002932015.1	UNIPROT_AC:Q0WJ78	29.94	4.00E-16	81.3
gi 238918568 ref YP_002932082.1	UNIPROT_AC:Q5NE72	63	0	730
gi 238918632 ref YP_002932146.1	UNIPROT_AC:Q8ZIL5	81.51	0	639
gi 238918653 ref YP_002932167.1	UNIPROT_AC:Q7CHU3	49.63	3.00E-68	253
gi 238918661 ref YP_002932175.1	UNIPROT_AC:Q8ZIG9	81.44	5.00E-179	622
gi 238918692 ref YP_002932206.1	UNIPROT_AC:Q9P2T1	66.47	5.00E-138	486
gi 238918774 ref YP_002932288.1	UNIPROT_AC:Q5NHX9	56.27	1.00E-77	285
gi 238918804 ref YP_002932318.1	UNIPROT_AC:Q7CH24	51.56	4.00E-71	263
gi 238918827 ref YP_002932341.1	UNIPROT_AC:Q7CJP7	82.28	0	804
gi 238918863 ref YP_002932377.1	UNIPROT_AC:Q8ZAW9	27.65	2.00E-13	71.6
gi 238918942 ref YP_002932456.1	UNIPROT_AC:A4QPH0	23.04	2.00E-20	96.7
gi 238918945 ref YP_002932459.1	UNIPROT_AC:Q5NFQ5	24.73	3.00E-17	85.9
gi 238918948 ref YP_002932462.1	UNIPROT_AC:Q8CKB2	52.1	2.00E-58	223
gi 238918975 ref YP_002932489.1	UNIPROT_AC:Q8D162	80.43	8.00E-146	511
gi 238918989 ref YP_002932503.1	UNIPROT_AC:Q7CK43	76.23	1.00E-164	574
gi 238919005 ref YP_002932519.1	UNIPROT_AC:Q81TU4	44.38	1.00E-30	127
gi 238919010 ref YP_002932524.1	UNIPROT_AC:Q5NH48	39.44	1.00E-85	312
gi 238919041 ref YP_002932555.1	UNIPROT_AC:Q5NGM5	49.07	1.00E-22	100
gi 238919055 ref YP_002932569.1	UNIPROT_AC:P54819	50.23	2.00E-57	217
gi 238919120 ref YP_002932634.1	UNIPROT_AC:P22102	47.54	9.00E-90	325
gi 238919121 ref YP_002932635.1	UNIPROT_AC:Q81JY5	47.34	1.00E-56	214
gi 238919172 ref YP_002932686.1	UNIPROT_AC:Q7CJF7	88.35	0	1014
gi 238919180 ref YP_002932694.1	UNIPROT_AC:Q8ZCK0	84.71	0	847
gi 238919183 ref YP_002932698.1	UNIPROT_AC:Q81XE1	56.27	2.00E-84	307
gi 238919262 ref YP_002932777.1	UNIPROT_AC:Q8ZFB2	79.55	5.00E-96	345
gi 238919270 ref YP_002932785.1	UNIPROT_AC:Q81L32	57.05	1.00E-155	545
	UNIPROT_AC:Q81WF4	27.84	4.00E-12	67.8
gi 238919371 ref YP_002932886.1	UNIPROT_AC:Q8D0P1	90.7	1.00E-63	236
gi 238919417 ref YP_002932932.1	UNIPROT_AC:068779	76.06	1.00E-28	119
gi 238919466 ref YP_002932981.1	UNIPROT_AC:Q5NH02	55.73	7.00E-104	372
gi 238919469 ref YP_002932984.1	UNIPROT_AC:Q8ZEX9	78.57	0	644

gi 238919488 ref YP_002933003.1	UNIPROT_AC:Q8ZEV7	79.03	0	966
gi 238919490 ref YP_002933005.1	UNIPROT_AC:Q81K67	33.25	7.00E-66	246
gi 238919552 ref YP_002933067.1	UNIPROT_AC:Q8ZEK1	81.5	2.00E-168	587
gi 238919557 ref YP_002933072.1	UNIPROT_AC:Q5NG93	28.15	5.00E-18	87
gi 238919644 ref YP_002933159.1	UNIPROT_AC:Q81L97	21.46	4.00E-18	88.6
gi 238919737 ref YP_002933252.1	UNIPROT_AC:Q7CIN4	46.95	6.00E-142	499
gi 238919742 ref YP_002933257.1	UNIPROT_AC:Q7CIS8	89.15	0	854
gi 238919758 ref YP_002933273.1	UNIPROT_AC:Q7CHW4	70.88	5.00E-161	562
gi 238919771 ref YP_002933286.1	UNIPROT_AC:Q7CHA0	64.06	2.00E-133	470
gi 238919782 ref YP_002933297.1	UNIPROT_AC:Q8ZDW5	89.41	0	1231
gi 238919824 ref YP_002933339.1	UNIPROT_AC:Q8D1E7	59.4	0	820
gi 238919826 ref YP_002933341.1	UNIPROT_AC:Q7CIP7	76.32	0	1872
gi 238919860 ref YP_002933375.1	UNIPROT_AC:Q81LK7	37.32	2.00E-46	183
gi 238919957 ref YP_002933472.1	UNIPROT_AC:Q9ZFR9	85.66	0.00E+00	1031
gi 238919974 ref YP_002933489.1	UNIPROT_AC:P07954	59.44	4.00E-159	556
gi 238919980 ref YP_002933495.1	UNIPROT_AC:P11586	48.34	1.00E-145	512
gi 238919996 ref YP_002933511.1	UNIPROT_AC:Q8D1N7	58.71	1.00E-25	111
gi 238920001 ref YP_002933516.1	UNIPROT_AC:Q86SX6	36.73	3.00E-20	92
gi 238920016 ref YP_002933531.1	UNIPROT_AC:Q81JJ0	37.23	6.00E-35	142
gi 238920065 ref YP_002933580.1	UNIPROT_AC:Q7CIL5	26.4	1.00E-23	106
gi 238920209 ref YP_002933724.1	UNIPROT_AC:Q81JE5	52.66	5.00E-113	403
gi 238920212 ref YP_002933727.1	UNIPROT_AC:Q5NIQ1	27.48	1.00E-17	86.7
gi 238920240 ref YP_002933755.1	UNIPROT_AC:P58644	76.21	2.00E-96	347
gi 238920246 ref YP_002933761.1	UNIPROT_AC:Q8VSA1	39.39	5.00E-89	324
gi 238920265 ref YP_002933780.1	UNIPROT_AC:Q7CJ25	76.97	2.00E-67	250
gi 238920273 ref YP_002933788.1	UNIPROT_AC:Q8ZFU4	69.45	6.00E-147	515
gi 238920284 ref YP_002933799.1	UNIPROT_AC:Q81QP7	33.55	3.00E-108	388
gi 238920290 ref YP_002933805.1	UNIPROT_AC:Q7CI05	69.76	1.00E-99	358
gi 238920314 ref YP_002933829.1	UNIPROT_AC:P00830	28	8.00E-33	137
gi 238920333 ref YP_002933848.1	UNIPROT_AC:Q81S14	31.26	2.00E-55	212
gi 238920346 ref YP_002933861.1	UNIPROT_AC:Q81SX6	46.67	5.00E-50	192
gi 238920349 ref YP_002933864.1	UNIPROT_AC:Q8ZGB4	73.28	4.00E-163	569
gi 238920367 ref YP_002933882.1	UNIPROT_AC:Q9X6B6	80.27	0	1382
gi 238920390 ref YP_002933905.1	UNIPROT_AC:Q8ZGE1	78.73	0	921
gi 238920400 ref YP_002933915.1	UNIPROT_AC:Q7CHC8	27.76	1.00E-33	139
gi 238920464 ref YP_002933979.1	UNIPROT_AC:Q7CHD9	65.48	1.00E-25	110
gi 238920479 ref YP_002933994.1	UNIPROT_AC:Q7CG44	42.04	2.00E-54	209
gi 238920481 ref YP_002933996.1	UNIPROT_AC:Q7CHE8	68.53	3.00E-139	490
gi 238920520 ref YP_002934035.1	UNIPROT_AC:Q7CH95	88.85	0	1436
gi 238920525 ref YP_002934040.1	UNIPROT_AC:096007	37.04	2.00E-18	87
gi 238920578 ref YP_002934093.1	UNIPROT_AC:Q7CJ95	69.44	2.00E-84	306
gi 238920608 ref YP_002934123.1	UNIPROT_AC:Q8ZD27	76.45	6.00E-116	412
gi 238920609 ref YP_002934124.1	UNIPROT_AC:Q7CJA6	75.3	2.00E-150	527
gi 238920615 ref YP_002934130.1	UNIPROT AC:Q7CJB1	83.74	0	684
gi 238920688 ref YP_002934203.1	UNIPROT_AC:Q8D0P4	46.02	2.00E-107	385
gi 238920712 ref YP_002934227.1	UNIPROT_AC:Q8ZGW7	84.73	0	1147
gi 238920729 ref YP_002934244.1	UNIPROT_AC:Q7CH58	82.51	3.00E-168	586
gi 238920822 ref YP_002934337.1	UNIPROT_AC:Q5NH21	46.79	4.00E-75	276
gi 238920879 ref YP_002934394.1	UNIPROT_AC:Q5NEL1	53.59	1.00E-147	518

gi 238920896 ref YP_002934411.1	UNIPROT_AC:Q5NHS1	61.9	0	700
gi 238920902 ref YP_002934417.1	UNIPROT_AC:Q8ZCP4	79.01	1.00E-109	391
gi 238920907 ref YP_002934422.1	UNIPROT_AC:Q81LR7	58.28	0	750
gi 238920914 ref YP_002934429.1	UNIPROT_AC:Q5NGA0	37.91	4.00E-70	261
gi 238920969 ref YP_002934484.1	UNIPROT_AC:Q7CKD3	78.17	0	734
gi 238921023 ref YP_002934538.1	UNIPROT_AC:Q81VE0	51.35	5.00E-161	563
gi 238921024 ref YP_002934539.1	UNIPROT_AC:P12268	40.74	2.00E-88	321
gi 238921042 ref YP_002934557.1	UNIPROT_AC:Q7CJM9	83.72	0	687
gi 238921086 ref YP_002934601.1	UNIPROT_AC:Q8ZBU9	90.98	6.00E-123	435
gi 238921089 ref YP_002934604.1	UNIPROT_AC:P14576	31.77	8.00E-55	210
gi 238921110 ref YP_002934625.1	UNIPROT_AC:Q8ZBQ3	81.81	0	1415
gi 238921208 ref YP_002934723.1	UNIPROT_AC:Q81QN8	41.04	7.00E-88	320
gi 238921209 ref YP_002934724.1	UNIPROT_AC:Q8ZHI8	77.48	0	1529
gi 238921320 ref YP_002934835.1	UNIPROT_AC:Q8CWI1	79.95	0	693
gi 238921322 ref YP_002934837.1	UNIPROT_AC:Q8CWG4	26.02	2.00E-19	93.2
gi 238921352 ref YP_002934867.1	UNIPROT_AC:Q8ZAW9	67.44	1.00E-28	120
gi 238921379 ref YP_002934894.1	UNIPROT_AC:Q81S14	25.56	1.00E-22	103
gi 238921380 ref YP_002934895.1	UNIPROT_AC:Q8D1R3	32.29	2.00E-46	183
gi 238921387 ref YP_002934902.1	UNIPROT_AC:Q8ZA85	29.6	7.00E-14	74.3
gi 238921392 ref YP_002934907.1	UNIPROT_AC:Q5NE96	42.39	3.00E-27	116
gi 238921399 ref YP_002934914.1	UNIPROT_AC:Q81JP7	48.84	9.00E-84	305
gi 238921410 ref YP_002934925.1	UNIPROT_AC:Q8ZDX8	30.32	4.00E-25	110
gi 238921432 ref YP_002934947.1	UNIPROT_AC:P62829	40	4.00E-11	62
gi 238921541 ref YP_002935056.1	UNIPROT_AC:Q7CI04	29.13	3.00E-12	65.9
gi 238921570 ref YP_002935085.1	UNIPROT_AC:Q7CG67	28.3	2.00E-87	319
gi 238921637 ref YP_002935152.1	UNIPROT_AC:Q81U58	60	0	658
gi 238921638 ref YP_002935153.1	UNIPROT_AC:Q92482	39.16	1.00E-42	169
gi 238921673 ref YP_002935188.1	UNIPROT_AC:Q8D051	45.48	3.00E-81	297
gi 238921684 ref YP_002935199.1	UNIPROT_AC:Q81KV7	43.36	5.00E-92	333
gi 238921701 ref YP_002935216.1	UNIPROT_AC:Q5NFP9	69.49	0	887
gi 238921725 ref YP_002935240.1	UNIPROT_AC:Q81V35	52.79	3.00E-83	304
gi 238921727 ref YP_002935242.1	UNIPROT_AC:Q81V37	43.17	8.00E-33	134
gi 238921731 ref YP_002935246.1	UNIPROT_AC:Q81S64	47.2	5.00E-77	283

